73 resultados para Neuro-astroglial interaction model
Resumo:
People usually perform economic interactions within the social setting of a small group, while they obtain relevant information from a broader source. We capture this feature with a dynamic interaction model based on two separate social networks. Individuals play a coordination game in an interaction network, while updating their strategies using information from a separate influence network through which information is disseminated. In each time period, the interaction and influence networks co-evolve, and the individuals’ strategies are updated through a modified naive learning process. We show that both network structures and players’ strategies always reach a steady state, in which players form fully connected groups and converge to local conventions. We also analyze the influence exerted by a minority group of strongly opinionated players on these outcomes.
Resumo:
An experimental investigation is carried out to verify the feasibility of using an instrumented vehicle to detect and monitor bridge dynamic parameters. The low-cost method consists of the use of a moving vehicle fitted with accelerometers on its axles. In the laboratory experiment, the vehicle–bridge interaction model consists of a scaled two-axle vehicle model crossing a simply supported steel beam. The bridge model also includes a scaled road surface profile. The effects of varying the vehicle model configuration and speed are investigated. A finite element beam model is calibrated using the experimental results, and a novel algorithm for the identification of global bridge stiffness is validated. Using measured vehicle accelerations as input to the algorithm, the beam stiffness is identified with a reasonable degree of accuracy.
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure to provide adequate maintenance and guarantee the required levels of transport service and safety. In Europe, this is now a legal requirement - a European Directive requires all member states of the European Union to implement a Bridge Management System. However, the process is expensive, requiring the installation of sensing equipment and data acquisition electronics on the bridge. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges as an indicator of its structural condition. This approach eliminates the need for any on-site installation of measurement equipment. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the possibility of extracting the dynamic parameters of the bridge from the spectra of the vehicle accelerations. The effect of vehicle speed, vehicle mass and bridge span length on the detection of the bridge dynamic parameters are investigated. The algorithm is highly sensitive to the condition of the road profile and simulations are carried out for both smooth and rough profiles
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing, loading and environmental factors. A rational transport policy must monitor and provide adequate maintenance to this infrastructure to guarantee the required levels of transport service and safety. Increasingly in recent years, bridges are being instrumented and monitored on an ongoing basis due to the implementation of Bridge Management Systems. This is very effective and provides a high level of protection to the public and early warning if the bridge becomes unsafe. However, the process can be expensive and time consuming, requiring the installation of sensors and data acquisition electronics on the bridge. This paper investigates the use of an instrumented 2-axle vehicle fitted with accelerometers to monitor the dynamic behaviour of a bridge network in a simple and cost-effective manner. A simplified half car-beam interaction model is used to simulate the passage of a vehicle over a bridge. This investigation involves the frequency domain analysis of the axle accelerations as the vehicle crosses the bridge. The spectrum of the acceleration record contains noise, vehicle, bridge and road frequency components. Therefore, the bridge dynamic behaviour is monitored in simulations for both smooth and rough road surfaces. The vehicle mass and axle spacing are varied in simulations along with bridge structural damping in order to analyse the sensitivity of the vehicle accelerations to a change in bridge properties. These vehicle accelerations can be obtained for different periods of time and serve as a useful tool to monitor the variation of bridge frequency and damping with time.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.
Resumo:
This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations.
Resumo:
Ab initio electron scattering calculations using the R -matrix approach have been performed for within a three-state valence configuration-interaction model (VCI). The lowest three electronic target states ( , and the ) of this molecular nitrogen cation are included in the close-coupling method, with each state being represented by a valence CI approximation. From a detailed analysis of the resonance structure found in our work for the symmetries we find four prominent Rydberg series of the type , , , and a interloper resonance. This interloper molecular resonance associated with the B state of is seen to cause distortions of the resulting resonance spectra. A comparison of our total cross sections for the X - B transition shows excellent agreement with the available experimental data.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One of the solutions is in a drive-by approach utilizing vehicle vibrations while the vehicle passes over the bridge. In this approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. This study aims to examine subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the drive-by method.
Resumo:
RC beams shear strengthened with externally bonded fiber-reinforced polymer (FRP) U strips or side strips usually fail owing to debonding of the bonded FRP shear reinforcement. Because such debonding usually occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups intersected by the critical shear crack may not have reached yielding at beam shear failure. Consequently, the yield stress of internal steel stirrups in such a strengthened RC beam cannot be fully utilized. This adverse shear interaction between the internal steel shear reinforcement and the external FRP shear reinforcement may significantly reduce the benefit of the shear strengthening FRP but has not been considered explicitly by any of the shear strength models in the existing design guidelines. This paper presents a new shear strength model considering this adverse shear interaction through the introduction of a shear interaction factor. A comprehensive evaluation of the proposed model, as well as three other shear strength models, is conducted using a large test database. It is shown that the proposed shear strength model performs the best among the models compared, and the performance of the other shear strength models can be significantly improved by including the proposed shear interaction factor. Finally, a design recommendation is presented.
Resumo:
Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.
Resumo:
RC beams shear-strengthened with externally-bonded FRP side strips or U-strips usually fail by debonding. As such debonding occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups may not have reached yielding at beam shear failure. Consequently, the internal steel stirrups cannot be fully utilized. This adverse shear interaction between internal steel stirrups and external FRP strips may significantly reduce the benefit of shear-strengthening FRP but has not been considered by any of the existing FRP strengthening design guidelines. In this paper, an improved shear strength model capable of accounting for the effect of the above shear interaction is first presented, in which the unfavorable effect of shear interaction is reflected through a reduction factor (i.e. shear interaction factor). Using a large test database established in the present study, the performance of the proposed model as well as that of three other shear strength models is then assessed. This assessment shows that the proposed shear strength model performs better than the three existing models. The assessment also shows that the inclusion of the proposed shear interaction factor in the existing models can significantly improve their performance.