62 resultados para Nano-Indentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo simulation of chemical ordering kinetics in nano-layered L10 AB binary intermetallics was performed. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L10 c-variant superstructure with monoatomic planes parallel to the surface and off-plane easy magnetization. The layers, originally perfectly ordered in a c-variant of the L10 superstructure, showed homogeneous disordering running in parallel with a spontaneous re-orientation of the monoatomic planes leading to a mosaic microstructure composed of a- and b-L10-variant domains. The domains nucleated heterogeneously on the surface of the layer and grew discontinuously inwards its volume. Finally, the domains relaxed towards an equilibrium microstructure of the system. Two “atomistic-scale” processes: (i) homogeneous disordering and (ii) nucleation of the a- and b-L10-variant domains showed characteristic time scales. The same was observed for the domain microstructure relaxation. The discontinuous domain growth showed no definite driving force and proceeded due to thermal fluctuations. The above complex structural evolution has recently been observed experimentally in epitaxially deposited thin films of FePt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag/gamma-Al2O3 catalysts have been characterized in-depth during different thermo-chemical treatments by in situ diffuse reflectance UV-visible spectroscopy and quasi in situ Transmission Electron Microscopy. The combination of these techniques indicates that sintering and redispersion of silver is clearly observed from the increases and decreases in the absorption band intensity over the range of 250-600 nm due to the presence of silver clusters and silver nanoparticles. These results allow us to study the effect of the reaction feed on the metal dispersion at different operation conditions and discuss the formation of active sites during the selective catalytic reduction of O-2 with excess H-2 in the presence of unsaturated hydrocarbons. In this case high catalytic activity and selectivity toward the oxygen removal was achieved for this catalyst. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic aerogels were synthesized by sol–gel polymerization of resorcinol (R) with formaldehyde (F) catalyzed by sodium carbonate (C) followed by vacuum drying. The influence of the resorcinol/sodium carbonate ratio (R/C) on the porous structure of the resultant aerogels was investigated. The nitrogen adsorption–desorption measurements show that the aerogels possess a well developed porous structure and mesoporosity was found to increase with increasing the R/C ratio. Carbon aerogels were obtained by carbonization of RF aerogels. The carbonization temperature impacts the microstructure of the aerogels by pore transformations during carbonization probably due to the formation of micropores and shrinkage of the gel structure. The results showed that a temperature of 1073 Kis more effective in the development of the pore structure of the gel. Activated carbon aerogels were obtained from the CO2 activation of carbon aerogels. Activation results in an increase in the number of both micropores and mesopores, indicative of pore creation in the structure of the carbon. Activation at higher temperatures results in a higher degree of burn off and increases the pore volume and the surface area remarkably without change of the basic porous structure, pore size, and pore size distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-88812][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using 13C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)2 in 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], crystals were obtained that revealed the structure of [C2mim][Cu3(OAc)5(OH)2(H2O)]center dot H2O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.