33 resultados para Multi-objective analysis
Resumo:
In this paper, taking advantage of the inclusion of a special module on material deprivation in EU-SILC 2009. we provide a comparative analysis of patterns of deprivation. Our analysis identifies six relatively distinct dimensions of deprivation with generally satisfactory overall levels of reliability and mean levels of reliability across countries. Multi-level analysis based on 28 European countries reveals systematic variation in the importance of within and between country variation for a range of deprivation dimensions. The basic deprivation dimension is the sole dimension to display a graduated pattern of variation across countries. It also reveals the highest correlations with national and household income, the remaining deprivation dimensions and economic stress. It comes closest to capturing an underlying dimension of generalized deprivation that can provide the basis for a comparative European analysis of exclusion from customary standards of living. A multilevel analysis revealed that a range of household characteristics and household reference person socio-economic factors were related to basic deprivation and controlling for contextual differences in such factors allowed us to account for substantial proportions of both within and between country variance. The addition of macro-economic factors relating to average levels of disposable income and income inequality contributed relatively little further in the way of explanatory power. Further analysis revealed the existence of a set of significant interactions between micro socioeconomic attributes and country level gross national disposable income per capita. The impact of socio-economic differentiation was significantly greater where average income levels were lower. Or, in other words, the impact of the latter was greater for more disadvantaged socio-economic groups. Our analysis supports the suggestion that an emphasis on the primary role of income inequality to the neglect of differences in absolute levels of income may be misleading in important respects. (C) 2012 International Sociological Association Research Committee 28 on Social Stratification and Mobility. Published by Elsevier Ltd. All rights reserved.
Resumo:
Here we present the first high-resolution multi-proxy analysis of a rich fen in the central-eastern European lowlands. The fen is located in the young glacial landscape of the Sta{ogonek}zki river valley. We investigated the fen's development pathways, asking three main questions: (i) what was the pattern and timing of the peatland's vegetation succession, (ii) how did land use and climate affect the succession in the fen ecosystem, and (iii) to what degree does the reconstructed hydrology for this site correlate with those of other sites in the region in terms of past climate change? Several stages of fen history were determined, beginning with the lake-to-fen transition ca. AD 700. Brown mosses dominated the sampling site from this period to the present. No human impact was found to have occurred until ca. AD 1700, when the first forest cutting began. Around AD 1890 a more significant disturbance took place-this date marks the clear cutting of forests and dramatic landscape openness. Deforestation changed the hydrology and chemistry of the mire, which was revealed by a shift in local plant and testate amoebae communities. We also compared a potential climatic signal recorded in the peat profile before AD 1700 with other sites from the region. © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.
Resumo:
This paper presents a numerical study of a linear compressor cascade to investigate the effective end wall profiling rules for highly-loaded axial compressors. The first step in the research applies a correlation analysis for the different flow field parameters by a data mining over 600 profiling samples to quantify how variations of loss, secondary flow and passage vortex interact with each other under the influence of a profiled end wall. The result identifies the dominant role of corner separation for control of total pressure loss, providing a principle that only in the flow field with serious corner separation does the does the profiled end wall change total pressure loss, secondary flow and passage vortex in the same direction. Then in the second step, a multi-objective optimization of a profiled end wall is performed to reduce loss at design point and near stall point. The development of effective end wall profiling rules is based on the manner of secondary flow control rather than the geometry features of the end wall. Using the optimum end wall cases from the Pareto front, a quantitative tool for analyzing secondary flow control is employed. The driving force induced by a profiled end wall on different regions of end wall flow are subjected to a detailed analysis and identified for their positive/negative influences in relieving corner separation, from which the effective profiling rules are further confirmed. It is found that the profiling rules on a cascade show distinct differences at design point and near stall point, thus loss control of different operating points is generally independent.
Resumo:
A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.
Resumo:
Although e-commerce adoption and customers initial purchasing behavior have been well studied in the literature, repeat purchase intention and its antecedents remain understudied. This study proposes a model to understand the extent to which trust mediates the effects of vendor-specific factors on customers intention to repurchase from an online vendor. The model was tested and validated in two different country settings. We found that trust fully mediates the relationships between perceived reputation, perceived capability of order fulfillment, and repurchasing intention, and partially mediates the relationship between perceived website quality and repurchasing intention in both countries. Moreover, multi-group analysis reveals no significant between-country differences of the model with regards to the antecedents and outcomes of trust, except the effect of reputation on trust. Academic and practical implications and future research are discussed. © 2009 Operational Research Society Ltd.
Resumo:
This study examined the usefulness of integrating measures of affective and moral attitudes into the Theory of Planned Behaviour (TPB)-model in predicting purchase intentions or organic foods. Moral attitude was operationalised Lis positive self-rewarding feelings of doing the right thing. Questionnaire data were gathered in three countries: Italy (N = 202), Finland (N = 270) and UK (N = 200) in March 2004. Questions focussed on intentions to purchase organic apples and organic ready-to-cook pizza instead of their conventional alternatives. Data were analysed using Structural Equation Modelling by simultaneous multi-group analysis of the three Countries. Along with attitudes, moral attitude and subjective norms explained considerable shares of variances in intentions. The relative influences of these variables varied between the Countries, such that in the UK and Italy moral attitude rather than subjective norms had stronger explanatory power. In Finland it was other way around. Inclusion of moral attitude improved the model fit and predictive ability of the model, although only marginally in Finland. Thus the results partially Support the usefulness of incorporating moral measures as well as affective items for attitude into the framework of TPB. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ambisonics and higher order ambisonics (HOA) technologies aim at reproducing sound field either synthesised or previously recorded with dedicated microphones. Based on a spherical harmonic decomposition, the sound field is more precisely described when higher-order components are used. The presented study evaluated the perceptual and objective localisation accuracy of the sound field encoded with four microphones of order one to four and decoded over a ring of loudspeakers. A perceptual test showed an improvement of the localisation with higher order ambisonic microphones. Reproduced localisation indices were estimated for the four microphones and the respective synthetic systems of order one to four. The perceptual and objective analysis revealed the same conclusions. The localisation accuracy depends on the ambisonic order as well as the source incidence. Furthermore, impairments linked to the microphones were highlighted.
Resumo:
A methodology which allows a non-specialist to rapidly design silicon wavelet transform cores has been developed. This methodology is based on a generic architecture utilizing time-interleaved coefficients for the wavelet transform filters. The architecture is scaleable and it has been parameterized in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is designed in such a way that the cores can also be cascaded without any interface glue logic for any desired level of decomposition. This parameterization allows the use of any orthonormal wavelet family thereby extending the design space for improved transformation from algorithm to silicon. Case studies for stand alone and cascaded silicon cores for single and multi-stage analysis respectively are reported. The typical design time to produce silicon layout of a wavelet based system has been reduced by an order of magnitude. The cores are comparable in area and performance to hand-crafted designs. The designs have been captured in VHDL so they are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
A late Pleistocene vegetation record is presented, using multi-proxy analysis from three palaeochannels in the northern (Bario) and southern (Pa'Dalih) Kelabit Highlands of Sarawak, Malaysian Borneo. Before 50 000 cal a BP and until approximate to 47 700 cal a BP [marine isotope stage 3 (MIS3)], two of the sites were probably being influenced by energetic fluvial deposition, possibly associated with strong seasonality. Fluvial activity declines between 47 700 and 30 000 cal a BP (MIS3), and may be associated with a reduction in seasonality with overall stability in precipitation. The pollen record between 47 700 and 30 000 cal a BP generally shows much higher representation of upper-montane taxa compared with the Holocene, indicating often significantly reduced temperatures. After 35 000-30 000 cal a BP and until the mid-Holocene, hiatuses appear in two of the records, which could be linked to fluvial down-cutting during the late/mid Holocene. Despite the jump in ages, a pronounced representation of Ericaceae and upper-montane taxa, represented both at Bario and at Pa'Dalih, corresponds to a further lowering of temperatures during the Last Glacial Maximum (MIS2). Thick charcoal bands in the PDH 210 record also suggest periods of extreme aridity between 30 200 and 12 700 cal a BP. This is followed by energetic fluvial deposition of sands and gravels, and may reflect a significant increase in seasonality.
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.
Resumo:
This paper presents a new perceptual watermarking model for Discrete Shearlet transform (DST). DST provides the optimal representation [10] of the image features based on multi-resolution and multi-directional analysis. This property can be exploited on for watermark embedding to achieve the watermarking imperceptibility by introducing the human visual system using Chou’s model. In this model, a spatial JND profile is adapted to fit the sub-band structure. The combination of DST and the Just-Noticeable Distortion (JND) profile improves the levels of robustness against certain attacks while minimizing the distortion; by assigning a visibility threshold of distortion to each DST sub-band coefficient in the case of grey scale image watermarking.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.
Resumo:
Purpose:Physical activity is recommended for optimal prevention of cardiovascular disease(CVD) and participation in sport is associated with improved well-being. However, people with long-standing illness/disability are less likely to participate in sport than others. Evidence of factors associated with their participation is limited and the best approach to encourage participation is unknown. This study aimed to identify sport participation levels and their correlates, among adults with long standing illness/disability in Northern Ireland, where CVD prevalence is high. Method:Using routinely collected data in annual surveys of population samples from 2007 to 2011, descriptive statistics were derived. Chi-squared tests were used to compare characteristics of those with a long-term illness/disability and those without long-term health problems. Uni-variate binary regression analysis for the whole sample and those with a long-standing illness/disability, using sport participation as the dependent variable, was performed and variables with a p-value of 0.1 or less were taken into a multi-variate analysis. Results:The sample included 13,683 adults; 3550(26%) reported having long-term illness/disability. Fewer of those with, than without, long-term illness/disability reported sport participation in the previous year (868/3550(24.5%) v 5615/10133(55.6%)). Multi-variate analysis showed that, for those with long-standing illness/disability, being single and less socio-economically deprived correlated positively with sport participation. For both those with long-standing illness/disability and the full sample, sport participation correlated positively with being male, aged <56 years, access to a household car/van, sports club membership, health ‘fairly good’ or ‘good’ in the previous year, doing paid/unpaid work, and living in an urban location. For the full sample but not those with long-standing illness/disability, sport participation correlated positively with being a non-smoker, higher educational status and personal internet access. Of note, personal internet access was less for those with, than without, long-term illness/disability (41% v 70%). Conclusions:Efforts to promote physical activity in sport for those with long-standing illness/disability should target older people, married females, those who live rurally, and those who are socio-economically deprived and report their health as ‘not good’. Implementation of initiatives should not rely on the internet, to which these people may not have ready access, to help support their sport participation and physical activity in optimal CVD prevention.