161 resultados para MOLTEN-SALTS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C(4)mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optically active S-alkyl-N, N'-bis((S)-1-phenylethyl) thiouronium salts, abbreviated as (S)-[Cnpetu] Y (where Y is an anion; n = 1, 2, 3, 4, 6, 8, 10, 12 or 16), have been prepared and studied by a broad spectrum of analyses. This consists of density, viscosity, and conductivity determination, followed by a discussion of relevant correlations. Unusual trends depending on the S-alkyl chain length were documented for (S)-[Cnpetu][ NTf2] series (where [NTf2] = bis{(trifluoromethyl) sulfonyl} amide), including the viscosity decreasing with increasing chain length, and the conductivity showing a maximum between the S-butyl and the S-hexyl derivative. In addition, a hindered rotamerism of the thiouronium cation in dmso-d(6) solution was recognised by H-1 and C-13 NMR techniques. Thorough analysis of NMR spectra confirmed that the main contribution comes from rotation about the partial double C-S bond. For the first time, a neat thiouronium ionic liquid system has been subjected to quantitative analysis of hindered rotamerism by dynamic NMR coalescence studies, with estimated activation energy for rotation of 63.9 +/- 0.4 kJ mol(-1). Finally, the application of (S)-[C(n)petu] Y salts as chiral discriminating agents for carboxylates by 1H NMR spectroscopy was further investigated, demonstrating the influence of the S-alkyl chain length on chiral recognition; (S)-[C(2)petu][NTf2] ionic liquid with the mandelate anion gave the best results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, we present the formulation and the characterization of novel adiponitrile-based electrolytes as a function of the salt structure, concentration, and temperature for supercapacitor applications using activated carbon based electrode material. To drive this study two salts were selected, namely, the tetraethylammonium tetrafluoroborate and the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. Prior to determination of their electrochemical performance, formulated electrolytes were first characterized to quantify their thermal, volumetric, and transport properties as a function of temperature and composition. Then, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate their electrochemical properties as electrolyte for supercapacitor applications in comparison with those reported for the currently used model electrolyte based on the dissolution of 1 mol·dm–3 of tetraethylammonium tetrafluoroborate in acetonitrile. Surprisingly, excellent electrochemical performances were observed by testing adiponitrile-based electrolytes, especially those containing the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature molten salt. Differences observed on electrochemical performances between the selected adiponitrile electrolytes based on high-temperature (tetraethylammonium tetrafluoroborate) and the room-temperature (1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) molten salts are mainly driven by the salt solubility in adiponitrile, as well as by the charge and the structure of each involved species. Furthermore, in comparison with classical electrolytes, the selected adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide solution exhibits almost similar specific capacitances and lower equivalent serial resistance. These results demonstrate in fact that the adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide mixture can be used for the formulation of safer electrolytes presenting a very low vapor pressure even at high temperatures to design acetonitrile-free supercapacitor devices with comparable performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl3. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy and reliability of popular density functional approximations for the compounds giving origin to room temperature ionic liquids have been assessed by computing the T=0 K crystal structure of several 1-alkyl-3-methyl-imidazolium salts. Two prototypical exchange-correlation approximations have been considered, i.e., the local density approximation (LDA) and one gradient corrected scheme [PBE-GGA, Phys. Rev. Lett. 77, 3865 (1996)]. Comparison with low-temperature x-ray diffraction data shows that the equilibrium volume predicted by either approximations is affected by large errors, nearly equal in magnitude (~10%), and of opposite sign. In both cases the error can be traced to a poor description of the intermolecular interactions, while the intramolecular structure is fairly well reproduced by LDA and PBE-GGA. The PBE-GGA optimization of atomic positions within the experimental unit cell provides results in good agreement with the x-ray structure. The correct system volume can also be restored by supplementing PBE-GGA with empirical dispersion terms reproducing the r-6 attractive tail of the van der Waals interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We summarize results obtained by a combination of ab initio and classical computer simulations of dialkylimidazolium ionic liquids in different states of aggregation, from crystals to liquids and clusters. Unusual features arising from the competition between electrostatic, dispersion, and hydrogen-bonding interactions are identified at the origin of observed structural patterns. We also discuss the way Brønsted acids interact with ionic liquids leading to the formation of hydrogen-bonded anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using neutron and single crystal X-ray diffraction the structures of 1,3-dimethylimidazolim chloride and hexafluorophosphate salts have been determined in the liquid and the solid-state. The relative hydrogen bonding characteristics and sizes of the two anions force the ions to pack differently. In each case, a strong correlation between the crystal structure and liquid structure is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.