81 resultados para MIMO systems
Resumo:
The increasing scale of Multiple-Input Multiple- Output (MIMO) topologies employed in forthcoming wireless communications standards presents a substantial implementation challenge to designers of embedded baseband signal processing architectures for MIMO transceivers. Specifically the increased scale of such systems has a substantial impact on the perfor- mance/cost balance of detection algorithms for these systems. Whilst in small-scale systems Sphere Decoding (SD) algorithms offer the best quasi-ML performance/cost balance, in larger systems heuristic detectors, such Tabu-Search (TS) detectors are superior. This paper addresses a dearth of research in architectures for TS-based MIMO detection, presenting the first known realisations of TS detectors for 4 × 4 and 10 × 10 MIMO systems. To the best of the authors’ knowledge, these are the largest single-chip detectors on record.
Resumo:
This paper investigates the achievable sum-rate of uplink massive multiple-input multiple-output (MIMO) systems considering a practical channel impairment, namely, aged channel state information (CSI). Taking into account both maximum ratio combining (MRC) and zero-forcing (ZF) receivers at the base station, we present tight closed-form lower bounds on the sum-rate for both receivers, which provide efficient means to evaluate the sum-rate of the system. More importantly, we characterize the impact of channel aging on the power scaling law. Specifically, we show that the transmit power of each user can be scaled down by 1/√(M), which indicates that aged CSI does not affect the power scaling law; instead, it causes only a reduction on the sum rate by reducing the effective signal-to-interference-and-noise ratio (SINR).
Resumo:
Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.
Resumo:
Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.
Resumo:
In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.