65 resultados para LS-DYNA
Resumo:
Background— Depression is a risk factor for myocardial infarction (MI). Selective serotonin reuptake inhibitors reduce this risk. The site of action is the serotonin transporter (SLC6A4), which is expressed in brain and blood cells. A functional polymorphism in the promoter region of the SLC6A4 gene has been described. This polymorphism may be associated with the risk of MI. Methods and Results— The SLC6A4 polymorphism has been investigated by polymerase chain reaction in 671 male patients with MI and in 688 controls from the Etude Cas-Témoins de l’Infarctus du Myocarde (ECTIM) multicentric study. Percentages for LL, LS, and SS genotypes were 35.5%, 45.4%, and 19.1%, respectively, for cases versus 28.1%, 49.1%, and 22.8%, respectively, for controls. S allele frequency was 41.8% and 47.4% for cases and controls, respectively. After adjustment for age and center by using multivariable logistic regression, the odds ratio for MI associated with the LL genotype was 1.40 (95% CI 1.11 to 1.76, P=0.0047). Conclusions— The LL genotype of the SLC6A4 polymorphism is associated with a higher risk of MI. This could be attributable to the effect of the polymorphism on serotonin-mediated platelet activation or smooth muscle cell proliferation or on other risk factors, such as depression or response to stress
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
Cross sections differential with respect to energy and angle of ejected positrons and electrons for Ps(ls) fragmentation in collision with He, Ne, Ar, Kr and Xe targets are reported. For Ne, Ar, Kr and Xe, only the case where the target is not excited (target elastic collisions) is considered. For He, fragmentation with target excitation/ionization (target inelastic collisions) is also studied. The impulse approximation has been used for target elastic fragmentation, the first Born approximation for target inelastic processes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like O VI have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 63 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like C IV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 28 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
Effective collision strengths for electron-impact excitation of the phosphorus-like ion Cl III are presented for all fine- structure transitions among the levels arising from the lowest 23 LS states. The collisional cross sections are computed in the multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wave functions are used to represent the target states. The 23 LS states are formed from the basis configurations 3s(2)3p(3). 3s3p(4). 3s(2)3p(2)3d, and 3s(2)3p(2)4s, and correspond to 49 fine- structure levels, leading to a total possible 1176 fine- structure transitions. The effective collision strengths. obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. are tabulated in this paper for all 1176 transitions and for electron temperatures in the ranges T(K) = 7500-25.000 and log T(K) = 4.4-5.3. The former range encompasses the temperatures of particular importance for application to gaseous nebulae. while the latter range is more applicable to the study of solar and laboratory-type plasmas. (C) 2001 Academic Press.
Resumo:
Effective collision strengths for electron-impact excitation of the nitrogen-like ion Si VIII are presented over the wide range of electron temperatures log T(K) = 4.0-6.5. All 231 fine- structure transitions among the 22 fine-structure levels arising from the lowest 11 LS target states (2s(2)2p(3), 2s2p(4), 2p(5), and 2s(2)2p(2)3s) are considered in the tabulation. The collision strengths are evaluated in a multi- channel R-matrix approach, and the corresponding effective collision strengths are obtained by averaging these over a Maxwellian distribution of electron velocities. Comparisons are made with recent distorted-wave results at high incident electron energies. Differences of up to 20% are found, particularly for some allowed transitions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The magnetic dipole transitions between fine structure levels in the ground term of Ti-like ions, (3d(4)) D-5(2)-D-5(3), were investigated by observation of visible and near-UV light for several elements with atomic numbers from 51 to 78. The wavelengths are compared with theoretical values we recently calculated. The differences between the present calculations and measurements are less than 0.6%. The anomalous wavelength stability predicted by Feldman, Indelicato and Sugar [J. Opt. Soc. Am. B 8, 3 (1991)] was observed. We attribute this anomalous wavelength stability to the transition from LS to JJ coupling and the asymptotic behavior of the transition energies in the intermediate coupling regime.
Resumo:
Fasciola hepatica secretes cathepsin L proteases that facilitate the penetration of the parasite through the tissues of its host, and also participate in functions such as feeding and immune evasion. The major proteases, cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) are members of a lineage that gave rise to the human cathepsin Ls, Ks and Ss, but while they exhibit similarities in their substrate specificities to these enzymes they differ in having a wider pH range for activity and an enhanced stability at neutral pH. There are presently 13 Fasciola cathepsin L cDNAs deposited in the public databases representing a gene family of at least seven distinct members, although the temporal and spatial expression of each of these members in the developmental stage of F. hepatica remains unclear. Immunolocalisation and in situ hybridisation studies, using antibody and DNA probes, respectively, show that the vast majority of cathepsin L gene expression is carried out in the epithelial cells lining the parasite gut. Within these cells the enzyme is packaged into secretory vesicles that release their contents into the gut lumen for the purpose of degrading ingested host tissue and blood. Liver flukes also express a novel multi-domain cystatin that may be involved in the regulation of cathepsin L activity. Vaccine trials in both sheep and cattle with purified native FheCL1 and FheCL2 have shown that these enzymes can induce protection, ranging from 33 to 79%, to experimental challenge with metacercariae of F. hepatica, and very potent anti-embryonation/hatch rate effects that would block parasite transmission. In this article we review the vaccine trials carried out over the past 8 years, the role of antibody and T cell responses in mediating protection and discuss the prospects of the cathepsin Ls in the development of first generation recombinant liver fluke vaccines. Author Keywords: Helminths; Trematodes; Parasites; Cathepsins; Proteases; Vaccines; Immunology; Biochemistry
Resumo:
We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C(+). The ionization probability of a coherent superposition of the 2s2p(2) (2)D and (2)S states shows rapid modulation due to collective dynamics of the two equivalent 2p electrons, with the modulation frequency linked to the dielectronic repulsion. The best insight into this collective dynamics is achieved by a transformation from LS symmetry to the uncoupled basis. Such dynamics may be important in high-harmonic generation using open-shell atoms and ions.
Resumo:
This study evaluated the clinical and histopathological responses of vulval lichen sclerosus (LS) and squamous hyperplasia (SH) to photodynamic therapy (PDT). A novel bioadhesive patch containing aminolevulinic acid (ALA) at a dose of (38 mg/cm(2)) was used to treat 10 patients before irradiation with light of 630 nm. Clinical, histopathological and pathological responses to treatment were assessed at 6 weeks post-treatment. After 17 cycles of PDT, six patients reported significant symptomatic relief and no cutaneous photosensitivity. Histopathological differences were not demonstrated, but statistically significant induction of apoptosis was seen. It can be concluded that ALA-PDT patch-based formulation is pragmatic and primarily offers symptomatic management of vulval LS and SH.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.
Resumo:
This paper proposes a new hierarchical learning structure, namely the holistic triple learning (HTL), for extending the binary support vector machine (SVM) to multi-classification problems. For an N-class problem, a HTL constructs a decision tree up to a depth of A leaf node of the decision tree is allowed to be placed with a holistic triple learning unit whose generalisation abilities are assessed and approved. Meanwhile, the remaining nodes in the decision tree each accommodate a standard binary SVM classifier. The holistic triple classifier is a regression model trained on three classes, whose training algorithm is originated from a recently proposed implementation technique, namely the least-squares support vector machine (LS-SVM). A major novelty with the holistic triple classifier is the reduced number of support vectors in the solution. For the resultant HTL-SVM, an upper bound of the generalisation error can be obtained. The time complexity of training the HTL-SVM is analysed, and is shown to be comparable to that of training the one-versus-one (1-vs.-1) SVM, particularly on small-scale datasets. Empirical studies show that the proposed HTL-SVM achieves competitive classification accuracy with a reduced number of support vectors compared to the popular 1-vs-1 alternative.
Resumo:
In this paper. we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d(6)4s and 3d(7) even parity configuration states to the 3d(6)4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7) and 3d(6)4p were included in the wave-function representation of the target, including all doublet. quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a "top up" procedure.