61 resultados para Kerr magneto-optical effect
Resumo:
Optical signals measured in apertureless scanning near field optical microscopy (ASNOM) under ambient conditions are found to be affected significantly by the thin water layer absorbed on the surface under investigation, the presence of which is detected through measurements of the shear force experienced by the tip. This water layer also results in a large hysteresis between optical signals measured during approach and withdrawal of the tip to the sample surface. The role of this effect in ASNOM is anticipated to be significant, with the possibility of resultant topographically induced artefacts for ASNOM involving intermittent contact of tip and sample, but also providing a potential mechanism for nanoscale optical resolution.
Resumo:
Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance
Resumo:
A joint theoretical-experimental study of the transfer ionization process p + He -> H-0 + He2+ + e(-) is presented. For the first time all particles in the final state have been detected in triple coincidence. This fully differential measurement is in good agreement with a theoretical model where the target is described by a wavefunction containing both radial and angular correlation terms.
Resumo:
We suggest a scheme to generate a macroscopic superposition state ("Schrodinger cat state") of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.
Resumo:
We consider the dynamics of a movable mirror in a Fabry-Perot cavity coupled through radiation pressure to the cavity field and in contact with a thermal bath at finite temperature. In contrast to previous approaches, we consider arbitrary values of the effective detuning between the cavity and an external input field. We analyse the radiation-pressure effect on the Brownian motion of the mirror and its significance in the density noise spectrum of the output cavity field. Important properties of the mirror dynamics can be gathered directly from this noise spectrum. The presented reconstruction provides an experimentally useful tool in the characterization of the energy and rigidity of the mirror as modified by the coupling with light. We also give a quantitative analysis of the recent experimental observation of self-cooling of a micromechanical oscillator.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
The Yarkovsky-O'Keefe-Radzievskii-Paddack effect is believed to alter the spin states of small bodies in the solar system. However, evidence for the effect has so far been indirect. Here we report precise optical photometric and radar observations acquired over four years of a small near-Earth asteroid (54509) 2000 PH5. We find the asteroid has been continuously increasing its rotation rate omega over this period by domega/dt = (2.0+/- 0.2) x 10-4 deg/day2. We simulated the close Earth approaches from 2001-2005, showing that gravitational torques cannot explain the observed spin-rate increase. Dynamical simulations also suggest that 2000 PH5 may reach a rotation period of ~20 seconds towards the end of its expected lifetime
Resumo:
Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T-C), temperature of maximum dielectric constant (T-m) and temperature of the onset of reversible polarization (T-ferro) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba0.5Sr0.5)TiO3 thin films on SrRuO3 electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient.
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
We have determined the absolute configurations of conformationally flexible cis-dihydrodiol metabolites (cis-1,2-dihydroxy-3,5-cyclohexadienes), bearing different substituents (e.g., Br, F, CF3, CN, Me) in 3- and 5-positions, by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Convergent results were obtained by both methods in eight out of ten cases. For the difficult cases, where either conformer population and/or chiroptical properties (calculated rotational strengths of the long-wavelength Cotton effect or optical rotations) of contributing conformers remain inconclusive, the absolute configuration could still be correctly assigned based on one of the biased properties (either ECD or optical rotation). This approach appears well-suited for a broad spectrum of conformationally flexible chiral molecules.
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454
Resumo:
This work explores the effects of argon and nitrogen, two electrochemically and chemically inert gases frequently used in sample preparation of room temperature ionic liquid (RTIL) solutions, on the eelectrochemical characterization of ferrocene (Fc) dissolved in the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)mim][NTf2]). Remarkably, chronoamperometrically determined diffusion coefficients of Fc in [C(2)mim][NTf2] are found to increase from 4.8 (+/- 0.2) x 10(-11) m(2) s(-1) under vacuum conditions to 6.6 (+/- 0.5) x 10(-11) m(2) s(-1) in an atmosphere of 1 atm Ar. In contrast, exposing a vacuum-purified sample to an atmosphere of 1 atm N-2 resulted in no significant change in the measured diffusion coefficient of Fc. The effect of dissolved argon on diffusion transport is unexpected and has implications in electrochemistry and elsewhere. Fc was found to volatilize under vacuum conditions. We propose, however, that evacuation of the cell by vacuum prior to electrochemical measurements being carried out is the only way to ensure that no contamination of the sample occurs, and use of an in situ method of determining the diffusion coefficient and concentration of Fc dispells,any ambiguity associated with Fc depletion by vacuum.