71 resultados para K-H unstable wave
Resumo:
Saturated output has been observed for both Ne and Ni-like X-ray lasers when Pumped in the transient mode. As these 'normal' transitions display very high gain, attempts have been made to observe a 2p --> 2s inner shell transition in Ne-like ions, which scale well towards the water window. Modelling of the pump conditions for Ge lasing at 6.2 run is presented. As the predicted gain is low the experiment was set up for 18 mm targets. Shots were taken on Ti, Fe, Ni and Ge. A similar to1.5 ps travelling wave pulse is applied at various times after the peak of a long, preforming Pulse. Various pump conditions were attempted but no inner shell X-ray laser was detected.
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
A new method for modeling-frequency-dependent boundaries in finite-difference time-domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations is presented. The proposed approach allows the direct incorporation of a digital impedance filter (DIF) in the Multidimensional (2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a Suitable recursive formulation. The method is analyzed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which matches locally reacting surface (LRS) theory closely. Furthermore a numerical boundary analysis (NBA) formula is provided as a technique for an analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.
Resumo:
In this paper, we present new methods for constructing and analysing formulations of locally reacting surfaces that can be used in finite difference time domain (FDTD) simulations of acoustic spaces. Novel FDTD formulations of frequency-independent and simple frequency-dependent impedance boundaries are proposed for 2D and 3D acoustic systems, including a full treatment of corners and boundary edges. The proposed boundary formulations are designed for virtual acoustics applications using the standard leapfrog scheme based on a rectilinear grid, and apply to FDTD as well as Kirchhoff variable digital waveguide mesh (K-DWM) methods. In addition, new analytic evaluation methods that accurately predict the reflectance of numerical boundary formulations are proposed. numerical experiments and numerical boundary analysis (NBA) are analysed in time and frequency domains in terms of the pressure wave reflectance for different angles of incidence and various impedances. The results show that the proposed boundary formulations structurally adhere well to the theoretical reflectance. In particular, both reflectance magnitude and phase are closely approximated even at high angles of incidence and low impedances. Furthermore, excellent agreement was found between the numerical boundary analysis and the experimental results, validating both as tools for researching FDTD boundary formulations.
Resumo:
Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations have also been discussed.
Ion-acoustic waves in a two-electron-temperatute plasma: oblique modulation and envelope excitations
Resumo:
Theoretical and numerical studies are carried out for the nonlinear amplitude modulation of ion-acoustic waves propagating in an unmagnetized, collisionless, three-component plasma composed of inertial positive ions moving in a background of two thermalized electron populations. Perturbations oblique to the carrier wave propagation direction have been considered. The stability analysis, based on a nonlinear Schrodinger-type equation, shows that the wave may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Different types of localized excitations (envelope solitary waves) are shown to exist in qualitative agreement with satellite observations in the magnetosphere.
Resumo:
An analytical model based on Lagrangian variables is presented for the description of ion-acoustic waves propagating in an unmagnetized, collisionless, three-component plasma composed of inertial positive ions and two thermalized electron populations, characterized by different temperatures. The wave's amplitude is shown to be modulationally unstable. Different types of localized envelope electrostatic excitations are shown to exist, and their forms are analytically and numerically investigated in terms of the plasma dispersion and nonlinearity laws. These results are in qualitative agreement with satellite observations in the magnetosphere. (C) 2004 American Institute of Physics.
Resumo:
The parametric interaction between large amplitude whistlers and ponderomotively driven quasistationary density perturbations in plasmas is considered. A cubic nonlinear Schrodinger equation is derived and then solved analytically to show the occurrence of modulational instability as well as the existence of bright and dark envelope solitons, which are referred to as whistlerons. Explicit whistleron profiles are presented and the relevance to space and laboratory plasmas is discussed. (C) 2005 American Institute of Physics.
Resumo:
The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.