23 resultados para Irã
Resumo:
Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.
Resumo:
In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.
Resumo:
We have investigated the photoionization of Ne+ in the combined field of a short infrared laser pulse and a delayed ultrashort pulse of the infrared laser's 23rd harmonic. We observe an ionization yield compatible with a picture in which one electron gets excited into Rydberg states by the harmonic laser field and is subsequently removed by the infrared laser field. Modulations are seen in the ionization yield as a function of time delay. These modulations originate from the trapping of population in low members of the Rydberg series with different states being populated at different ranges of delay times. The calculations further demonstrate that single-threshold calculations cannot reproduce the Ne+ photoionization yields obtained in multithreshold calculations.
Resumo:
We demonstrate the capability of ab initio time-dependent R-matrix theory to obtain accurate harmonic generation spectra of noble-gas atoms at near-IR wavelengths between 1200 and 1800 nm and peak intensities up to 1.8 × 10^(14) W/cm^(2). To accommodate the excursion length of the ejected electron, we use an angular-momentum expansion up to Lmax=279. The harmonic spectra show evidence of atomic structure through the presence of a Cooper minimum in harmonic generation for Kr, and of multielectron interaction through the giant resonance for Xe. The theoretical spectra agree well with those obtained experimentally.