68 resultados para Insulin-like growth factor (IGF-1)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic administration of thiazolidinediones might predispose to cardiac hypertrophy. The aim was to investigate direct effects of rosiglitazone in rat ventricular cardiomyocytes maintained in vitro (24 h). Rosiglitazone (=10-5 M) did not increase protein synthesis and produced small inconsistent increases in cellular protein. In the presence of serum (10% v/v), but not insulin-like growth factor (IGF-1, 10-8 M) or insulin (1 U/ml), an interaction with rosiglitazone to stimulate protein synthesis was observed. The hypertrophic responses to noradrenaline (5×10-6 M), PMA (10-7 M) and ET-1 (10-7 M) were not attenuated by rosiglitazone. Rosiglitazone (10-7 M) did not influence protein synthesis in response to insulin (1 U/ml) and elevated glucose (2.5×10-2 M) alone or in combination, but attenuated the increase in protein mass observed in response to elevated glucose alone. In re-differentiated cardiomyocytes, a model of established hypertrophy, rosiglitazone (10-8 M–10-6 M) increased protein synthesis. Together, these data indicate that rosiglitazone does not initiate cardiomyocyte hypertrophy directly in vitro. However, during chronic administration, the interaction of rosiglitazone with locally-derived growth-regulating factors may make a modest contribution to cardiac remodelling and influence the extent of compensatory hypertrophy of the compromised rat heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Insulin-like growth factor (IGF) axis plays a key role in cell development, proliferation, and survival and is implicated in the etiology of several cancers. Few studies have examined the relationship between genetic variation of this axis and esophageal adenocarcinoma (EAC) or its precursors. METHODS: In a population-based case-control study, we investigated the association of common polymorphisms of IGF-1, IGF-2, IGF-1 receptor, IGF binding protein -3, growth hormones (GH) 1 and GH2, and GH receptor with reflux esophagitis (RE), Barrett esophagus (BE), and EAC. Two hundred and thirty RE, 224 BE, 227 EAC cases, and 260 controls were studied. Gene polymorphisms were identified using publicly available online resources; 102 IGF axis tag and putatively functional single-nucleotide polymorphisms (SNPs) were analyzed using MassARRAY iPLEX and Taqman assays. Results were analyzed using Haploview.
RESULTS: Three polymorphisms were disease-associated. IGF1 SNP rs6214 was associated with BE (adjusted P = .039). Using GG genotype as reference, odds ratio for BE in AA (wild-type) was 0.43 (95% confidence interval [CI], 0.24-0.75). GH receptor SNP rs6898743 was associated with EAC (adjusted P = .0112). With GG as reference, odds ratio for EAC in CC (wildtype) genotype was 0.42 (95% CI, 0.23-0.76). IGF1 (CA)(17) 185-bp allele was associated with RE (adjusted P = .0116). Using IGF1(non17) as reference, odds ratio for RE in IGF1(17) carriers was 7.29 (95% CI, 1.57-46.7).
CONCLUSIONS: In this study, 3 polymorphisms of IGF genes were associated with EAC or its precursors. These polymorphisms may be markers of disease risk; independent validation of our findings is required. These results suggest the IGF pathway is involved in EAC development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic bone substitutes provide an alternative to autograft but do not give equivalent clinical results. Their performance may be enhanced by adding osteogenic growth factors. In this study, TGFbeta1 was absorbed on to a carrier of 0 tricalcium phosphate and Gelfoam(R) and used to fill a defect around a tibial implant in a rat model of revision arthoplasty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical involvement of TGF-beta 1 (transforming growth factor-beta 1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-beta 1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-beta 1 and its physiological significance. CTGF was determined to bind directly to the T beta RIII (TGF-beta type III receptor) and antagonize TGF-beta 1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-beta 1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-beta 1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-beta 1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF Knockdown of T beta RIII restored TGF-beta 1-mediated Smad signalling and cell contractility, suggesting that T beta RIII is key for CTGF-mediated regulation of TGF-beta 1. Comparison of gene expression profiles from CTGF/TGF-beta 1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-beta 1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates a potential role for TGF beta(1), in the pathogenesis of cyclosporin A-induced gingival overgrowth (CsA-OG). TGF beta(1) was localized immunohistochemically in the connective tissue of both normal gingiva and CsA-OG. Intense staining for TGF beta(1) was detected at the tips of the dermal papillae of the overgrown gingiva. In addition, fibroblasts derived from healthy gingiva and fibroblasts derived from CsA-OG were cultured both as monolayers or embedded in a 3D-collagen gel. Fibroblast activity was monitored in terms of protein and collagen production in the presence of (i) 1 ng/ml TGF beta(1), (ii) 500 ng/ml CsA, or (iii) 500 ng/ml CsA and 1 ng/ml TGF beta(1). In monolayer culture TGF beta(1) significantly increased protein and collagen production in all cell strains (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SCOPE: This study explores the relationship between aflatoxin and the insulin-like growth factor (IGF) axis and its potential effect on child growth.

METHODS AND RESULTS: One hundred and ninety-nine Kenyan schoolchildren were studied for aflatoxin-albumin adduct (AF-alb), IGF1 and IGF-binding protein-3 (IGFBP3) levels using ELISA. AF-alb was inversely associated with IGF1 and IGFBP3 (p < 0.05). Both IGF1 and IGFBP3 were significantly associated with child height and weight (p < 0.01). Children in the highest tertile of AF-alb exposure (>198.5 pg/mg) were shorter than children in the lowest tertile (<74.5 pg/mg), after adjusting for confounders (p = 0.043). Path analysis suggested that IGF1 levels explained ∼16% of the impact of aflatoxin exposure on child height (p = 0.052). To further investigate this putative mechanistic pathway, HHL-16 liver cells (where HHL-16 is human hepatocyte line 16 cells) were treated with aflatoxin B1 (0.5, 5 and 20 μg/mL for 24-48 h). IGF1 and IGFBP3 gene expression measured by quantitative PCR and protein in culture media showed a significant down-regulation of IGF genes and reduced IGF protein levels.

CONCLUSION: Aflatoxin treatment resulted in a significant decrease in IGF gene and protein expression in vitro. IGF protein levels were also lower in children with the highest levels of AFB-alb adducts. The data suggest that aflatoxin-induced changes in IGF protein levels could contribute to growth impairment where aflatoxin exposure is high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of screening methods based on the detection of biological effects of growth promoters is a promising approach to assist residue monitoring. To reveal useful effects on protein metabolism, male and female veal calves at 10 weeks of age were treated thrice with a combination of 25 mg 17ß-estradiol 3-benzoate and 150 mg 19-nortestosterone decanoate with 2 weeks intervals and finally once with 4 mg dexamethasone. Hormone-treated calves showed a significant accelerated growth rate over 6 weeks. Plasma samples of treated and control calves were analysed for immunoreactive inhibin (ir-inhibin), osteocalcin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor-binding protein 2 (IGFBP-2), IGFBP-3, luteinzing hormone (LH), follicle-stimulating hormone (FSH) and prolactin using immunoaffinity assays. Hormone treatment did not affect levels of IGF-1, IGFBP-2, IGFBP-3, LH, FSH and prolactin. The concentration of circulating ir-inhibin decreased, however, significantly (P < 0.05) in bull calves upon administration of the sex steroids, whereas it remained unchanged in the female animals. Dexamethasone treatment decreased significantly (P < 0.05) circulating levels of osteocalcin in both female and male animals. Ir-inhibin and osteocalcin were, therefore, considered as candidates for a protein biomarker-based screening assay for detection of abuse of estrogens, androgens and/or glucocorticoids in cattle fattening, which is being developed in the framework of EU research project BioCop

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims-An increased concentration of insulin-like growth factor 1 (IGF-1) is an independent risk factor for premenopausal breast cancer. Tamoxifen is thought initially to reduce concentrations of IGF-1 and increase concentrations of the IGF binding proteins. The aim of this study was to compare concentrations of IGF-1, IGF binding protein 1 (IGF-BP1), and IGF-BP3 in patients with breast cancer (n = 14) with those seen in control subjects (n = 23) and to assess the effect of tamoxifen on IGF status in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes, in particular type 2, is associated with an increased incidence of cancer. Although the mortality attributable to cancer in type 2 diabetes is overshadowed by that due to cardiovascular disease, emerging data from epidemiologic studies suggest that insulin therapy may confer added risk for cancer, perhaps mediated by signaling through the IGF-1 (insulin-like growth factor-1) receptor. Co-administered metformin seems to mitigate the risk associated with insulin. A recent series of publications in Diabetologia addresses the possibility that glargine, the most widely used long-acting insulin analogue, may confer a greater risk than other insulin preparations, particularly for breast cancer. This has led to a heated controversy. Despite this, there is a consensus that the currently available data are not conclusive and should not be the basis for any change in practice. Further studies and more thorough surveillance of cancer in diabetes are needed to address this important issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.