46 resultados para High-speed camera


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [NII] ?6584 image of Hb 12. We measured from our spectroscopy radial velocities of ~120kms-1 for these knots. We have derived the inclination angle of the hourglass-shaped nebular shell to be ~65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Ha and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel implementation of a tag sorting circuit for a weighted fair queueing (WFQ) enabled Internet Protocol (IP) packet scheduler is presented. The design consists of a search tree, matching circuitry, and a custom memory layout. It is implemented using 130-nm silicon technology and supports quality of service (QoS) on networks at line speeds of 40 Gb/s, enabling next generation IP services to be deployed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication and performance of the first bit-level systolic correlator array is described. The application of systolic array concepts at the bit level provides a simple and extremely powerful method for implementing high-performance digital processing functions. The resulting structure is highly regular, facilitating yield enhancement through fault-tolerant redundancy techniques and therefore ideally suited to implementation as a VLSI chip. The CMOS/SOS chip operates at 35 MHz, is fully cascadable and exhibits 64-stage correlation for 1-bit reference and 4-bit data. 7 refs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we explore various arithmetic units for possible use in high-speed, high-yield ALUs operated at scaled supply voltage with adaptive clock stretching. We demonstrate that careful logic optimization of the existing arithmetic units (to create hybrid units) indeed make them further amenable to supply voltage scaling. Such hybrid units result from mixing right amount of fast arithmetic into the slower ones. Simulations on different hybrid adder and multipliers in BPTM 70 nm technology show 18%-50% improvements in power compared to standard adders with only 2%-8% increase in die-area at iso-yield. These optimized datapath units can be used to construct voltage scalable robust ALUs that can operate at high clock frequency with minimal performance degradation due to occasional clock stretching. © 2009 IEEE.