35 resultados para Hepatitis autoinmune
Resumo:
Hepatocellular carcinoma (HCC) has a high mortality in East Asia and Sub-Saharan Africa, two regions where the main etiologic factors are chronic infections with hepatitis B vir-us and dietary exposure to aflatoxin. A single base substitution at the third nucleotide of codon 249 of TP53 (R249S) is common in HCC in these regions and has been associated with aflatoxin-DNA adducts. To determine whether R249S may be detected in plasma DNA before HCC diagnosis, we conducted a case-control study nested in a cohort of adult chronic hepatitis B virus carriers from Qidong County, People's Republic of China. Of the 234 plasma specimens that yielded adequate DNA, only 2 (0.9%) were positive for R249S by restriction fragment length polymorphisms, and both of them were controls. Of the 249 subjects tested for aflatoxin-albumin adducts, 168 (67%) were positive, with equal distribution between cases and controls. Aflatoxin-albumin adduct levels were low in the study, suggesting an overall low ongoing exposure to aflatoxin in this cohort. The R249S mutation was detected in 11 of 18 (61%) available tumor tissues. To assess whether low levels of mutant DNA were detectable in pre-diagnosis plasma, 14 plasma specimens from these patients were analyzed by short oligonucleotide mass analysis. Nine of them (64%) were found to be positive. Overall, these results suggest that HCC containing R249S can occur in the absence of significant recent exposure to aflatoxins. The use of short oligonucleotide mass analysis in the context of low ongoing aflatoxin exposure may allow the detection of R249S in plasma several months ahead of clinical diagnosis. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1638-43)
Resumo:
High rates of hepatocellular carcinoma (HCC) in The Gambia, West Africa, are primarily due to a high prevalence of chronic hepatitis B virus infection and heavy aflatoxin exposure via groundnut consumption. We investigated genetic polymorphisms in carcinogen-metabolizing (GSTM1, GSTT1, HYL1*2) and DNA repair (XRCC1) enzymes in a hospital-based case-control study. Incident HCC cases (n = 216) were compared with frequency-matched controls (n = 408) with no clinically apparent liver disease. Although the prevalence of variant genotypes was generally low, in multivariable analysis (adjusting for demographic factors, hepatitis B virus, hepatitis C virus, and TP53 status), the GSTM1-null genotype [odds ratio (OR), 2.45; 95% confidence interval (95% CI), 1.21-4.95] and the heterozygote XRCC1-399 AG genotype (OR, 3.18; 95% CI, 1.35-7.51) were significantly associated with HCC. A weak association of the HYL1*2 polymorphism with HCC was observed but did not reach statistical significance. GSTT1 was not associated with HCC. The risk for HCC with null GSTM1 was most prominent among those with the highest groundnut consumption (OR, 4.67; 95% CI, 1.45-15.1) and was not evident among those with less than the mean groundnut intake (OR, 0.64; 95% Cl, 0.20-2.02). Among participants who had all three suspected aflatoxin-related high-risk genotypes [GSTM1 null, HLY1*2 (HY/HH), and XRCC1 (AG/GG)], a significant 15-fold increased risk of HCC was observed albeit with imprecise estimates (OR, 14.7; 95% CI, 1.27-169). Our findings suggest that genetic modulation of carcinogen metabolism and DNA repair can alter susceptibility to HCC and that these effects may be modified by environmental factors.
Resumo:
Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Å resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.
Resumo:
The key enzyme in coronavirus replicase polyprotein processing is the coronavirus main protease, 3CL(pro). The substrate specificities of five coronavirus main proteases, including the prototypic enzymes from the coronavirus groups I, II and III, were characterized. Recombinant main proteases of human coronavirus (HCoV), transmissible gastroenteritis virus (TGEV), feline infectious peritonitis virus, avian infectious bronchitis virus and mouse hepatitis virus (MHV) were tested in peptide-based trans-cleavage assays. The determination of relative rate constants for a set of corresponding HCoV, TGEV and MHV 3CL(pro) cleavage sites revealed a conserved ranking of these sites. Furthermore, a synthetic peptide representing the N-terminal HCoV 3CL(pro) cleavage site was shown to be effectively hydrolysed by noncognate main proteases. The data show that the differential cleavage kinetics of sites within pp1a/pp1ab are a conserved feature of coronavirus main proteases and lead us to predict similar processing kinetics for the replicase polyproteins of all coronaviruses.
Resumo:
The SAR development is described for a series of N-acyl pyrrolidine inhibitors of the Hepatitis C virus RNA-dependent RNA polymerase, NS5B, from tractable Delta 21 enzyme inhibitors to an example with antiviral activity in a cellular assay (HCV replicon). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND & AIMS: C/EBP alpha (cebpa) is a putative tumor suppressor. However, initial results indicated that cebpa was up-regulated in a subset of human hepatocellular carcinomas (HCCs). The regulation and function of C/EBP alpha was investigated in HCC cell lines to clarify its role in liver carcinogenesis. METHODS: The regulation of C/EBP alpha expression was studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemistry, methylation-specific PCR, and chromatin immunoprecipitation assays. C/EBP alpha expression was knocked-down by small interfering RNA or short hairpin RNA. Functional assays included colony formation, methylthiotetrazole, bromodeoxyuridine incorporation, and luciferase-reporter assays. RESULTS: Cebpa was up-regulated at least 2-fold in a subset (approximately 55%) of human HCCs compared with adjacent non tumor tissues. None of the up-regulated samples were positive for hepatitis C infection. The HCC cell lines Hep3B and Huh7 expressed high, PLC/PRF/5 intermediate, HepG2 and HCC-M low levels of C/EBP alpha, recapitulating the pattern of expression observed in HCCs. No mutations were detected in the CEBP alpha gene in HCCs and cell lines. C/EBP alpha was localized to the nucleus and functional in Hep3B and Huh7 cells; knocking-down its expression reduced target-gene expression, colony formation, and cell growth, associated with a decrease in cyclin A and CDK4 concentrations and E2F transcriptional activity. Epigenetic mechanisms including DNA methylation, and the binding of acetylated histone H3 to the CEBP alpha promoter-regulated cebpa expression in the HCC cells. CONCLUSIONS: C/EBP alpha is up-regulated in a subset of HCCs and has growth-promoting activities in HCC cells. Novel oncogenic mechanisms involving C/EBP alpha may be amenable to epigenetic regulation to improve treatment outcomes.
Resumo:
Background: We investigated the incidence of chronic kidney disease (CKD) in the United Kingdom heart transplant population, identified risk factors for the development of CKD, and assessed the impact of CKD on subsequent survival.
Methods: Data from the UK Cardiothoracic Transplant Audit and UK Renal Registry were linked for 1732 adult heart transplantations, 1996 to 2007. Factors influencing time to CKD, defined as National Kidney Foundation CKD stage 4 or 5 or preemptive kidney transplantation, were identified using a Cox proportional hazards model. The effects of distinct CKD stages on survival were evaluated using time-dependent covariates.
Results: A total of 3% of patients had CKD at transplantation, 11% at 1-year and more than 15% at 6 years posttransplantation and beyond. Earlier transplantations, shorter ischemia times, female, older, hepatitis C virus positive, and diabetic recipients were at increased risk of developing CKD, along with those with impaired renal function pretransplantation or early posttransplantation. Significant differences between transplantation centers were also observed. The risk of death was significantly higher for patients at CKD stage 4, stage 5 (excluding dialysis), or on dialysis, compared with equivalent patients surviving to the same time point with CKD stage 3 or lower (hazard ratios of 1.66, 8.54, and 4.07, respectively).
Conclusions: CKD is a common complication of heart transplantation in the UK, and several risk factors identified in other studies are also relevant in this population. By linking national heart transplantation and renal data, we have determined the impact of CKD stage and dialysis treatment on subsequent survival in heart transplant recipients.
Resumo:
We prospectively measured serum alkaline phosphatase (ALP), aspartate and alanine transaminase (AST/ALT), and tested sera for antinuclear, smooth-muscle, and antimitochondrial antibodies (ANA, SMA, AMA) in our patients with celiac sprue to determine the prevalence of associated liver abnormalities and its relevance to clinical management. Of 129 patients, ALP was the only elevated enzyme in 12 (9%) and in most cases was not thought to reflect significant liver disease. Seventeen (13%) had elevated AST and/or ALT with normal ALP. Levels normalized in 15 patients after dietary gluten exclusion and remained elevated in 2 noncompliers. Two patients (2%) with elevated AST, ALT, and ALP underwent further investigation: one had negative autoantibodies, liver biopsy, and endoscopic retrograde cholangiography and the other had ANA-positive chronic active hepatitis; enzymes in both cases improved with a gluten-free diet. There was no significant association between elevated AST/ALT and positive ANA/SMA; no patient had AMA. Abnormalities in liver enzymes are common in celiac sprue, but usually respond to dietary gluten exclusion. We propose that there is no need for invasive liver investigation in these patients unless there is more specific evidence of primary liver disease or failure of dietary response.
Resumo:
Aflatoxins and fumonisins (FB) are mycotoxins contaminating a large fraction of the world's food, including maize, cereals, groundnuts and tree nuts. The toxins frequently co-occur in maize. Where these commodities are dietary staples, for example, in parts of Africa, Asia and Latin America, the contamination translates to high-level chronic exposure. This is particularly true in subsistence farming communities where regulations to control exposure are either non-existent or practically unenforceable. Aflatoxins are hepatocarcinogenic in humans, particularly in conjunction with chronic hepatitis B virus infection, and cause aflatoxicosis in episodic poisoning outbreaks. In animals, these toxins also impair growth and are immunosuppressive; the latter effects are of increasing interest in human populations. FB have been reported to induce liver and kidney tumours in rodents and are classified as Group 2B 'possibly carcinogenic to humans', with ecological studies implying a possible link to increased oesophageal cancer. Recent studies also suggest that the FB may cause neural tube defects in some maize-consuming populations. There is a plausible mechanism for this effect via a disruption of ceramide synthase and sphingolipid biosynthesis. Notwithstanding the need for a better evidence-base on mycotoxins and human health, supported by better biomarkers of exposure and effect in epidemiological studies, the existing data are sufficient to prioritize exposure reduction in vulnerable populations. For both toxins, there are a number of practical primary and secondary prevention strategies which could be beneficial if the political will and financial investment can be applied to what remains a largely and rather shamefully ignored global health issue.