60 resultados para Hazard-Based Models
Resumo:
OBJECTIVE: To investigate the impact of smoking and smoking cessation on cardiovascular mortality, acute coronary events, and stroke events in people aged 60 and older, and to calculate and report risk advancement periods for cardiovascular mortality in addition to traditional epidemiological relative risk measures.
DESIGN: Individual participant meta-analysis using data from 25 cohorts participating in the CHANCES consortium. Data were harmonised, analysed separately employing Cox proportional hazard regression models, and combined by meta-analysis.
RESULTS: Overall, 503,905 participants aged 60 and older were included in this study, of whom 37,952 died from cardiovascular disease. Random effects meta-analysis of the association of smoking status with cardiovascular mortality yielded a summary hazard ratio of 2.07 (95% CI 1.82 to 2.36) for current smokers and 1.37 (1.25 to 1.49) for former smokers compared with never smokers. Corresponding summary estimates for risk advancement periods were 5.50 years (4.25 to 6.75) for current smokers and 2.16 years (1.38 to 2.39) for former smokers. The excess risk in smokers increased with cigarette consumption in a dose-response manner, and decreased continuously with time since smoking cessation in former smokers. Relative risk estimates for acute coronary events and for stroke events were somewhat lower than for cardiovascular mortality, but patterns were similar.
CONCLUSIONS: Our study corroborates and expands evidence from previous studies in showing that smoking is a strong independent risk factor of cardiovascular events and mortality even at older age, advancing cardiovascular mortality by more than five years, and demonstrating that smoking cessation in these age groups is still beneficial in reducing the excess risk.
Resumo:
This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network
Analysis). Each technique is broadly described with example uses, key attributes and reference material.
Resumo:
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.
Resumo:
Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.
Resumo:
Purpose: In an attempt to identify genes that are involved in resistance to SN38, the active metabolite of irinotecan (also known as CPT-11), we carried out DNA microarray profiling of matched HCT116 human colon cancer parental cell lines and SN38-resistant cell lines following treatment with SN38 over time.
Resumo:
Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.
Resumo:
Modelling patient flow in health care systems is vital in understanding the system activity and may therefore prove to be useful in improving their functionality. An extensively used measure is the average length of stay which, although easy to calculate and quantify, is not considered appropriate when the distribution is very long-tailed. In fact, simple deterministic models are generally considered inadequate because of the necessity for models to reflect the complex, variable, dynamic and multidimensional nature of the systems. This paper focuses on modelling length of stay and flow of patients. An overview of such modelling techniques is provided, with particular attention to their impact and suitability in managing a hospital service.
Resumo:
The diagnosis of myelodysplastic syndrome (MDS) currently relies primarily on the morphologic assessment of the patient's bone marrow and peripheral blood cells. Moreover, prognostic scoring systems rely on observer-dependent assessments of blast percentage and dysplasia. Gene expression profiling could enhance current diagnostic and prognostic systems by providing a set of standardized, objective gene signatures. Within the Microarray Innovations in LEukemia study, a diagnostic classification model was investigated to distinguish the distinct subclasses of pediatric and adult leukemia, as well as MDS. Overall, the accuracy of the diagnostic classification model for subtyping leukemia was approximately 93%, but this was not reflected for the MDS samples giving only approximately 50% accuracy. Discordant samples of MDS were classified either into acute myeloid leukemia (AML) or
Resumo:
Background: Barrett's esophagus (BE) is a premalignant lesion that predisposes to esophageal adenocarcinoma. However, the reported incidence of esophageal adenocarcinoma in patients with BE varies widely. We examined the risk of malignant progression in patients with BE using data from the Northern Ireland Barrett's esophagus Register (NIBR), one of the largest population-based registries of BE worldwide, which includes every adult diagnosed with BE in Northern Ireland between 1993 and 2005.
Subjects and Methods: We followed 8522 patients with BE, defined as columnar lined epithelium of the esophagus with or without specialized intestinal metaplasia (SIM), until the end of 2008. Patients with incident adenocarcinomas of the esophagus or gastric cardia or with high-grade dysplasia of the esophagus were identified by matching the NIBR with the Northern Ireland Cancer Registry, and deaths were identified by matching with records from the Registrar General's Office. Incidence of cancer outcomes or high-grade dysplasia was calculated as events per 100 person-years (% per year) of follow-up, and Cox proportional hazard models were used to determine incidence by age, sex, length of BE segment, presence of SIM, macroscopic BE, or low-grade dysplasia. All P values were from two-sided tests.
Results: After a mean of 7.0 years of follow-up, 79 patients were diagnosed with esophageal cancer, 16 with cancer of the gastric cardia, and 36 with high-grade dysplasia. In the entire cohort, incidence of esophageal or gastric cardia cancer or high-grade dysplasia combined was 0.22% per year (95% confidence interval [CI] = 0.19% to 0.26%). SIM was found in 46.0% of patients. In patients with SIM, the combined incidence was 0.38% per year (95% CI = 0.31 to 0.46%). The risk of cancer was statistically significantly elevated in patients with vs without SIM at index biopsy (0.38% per year vs 0.07% per year; hazard ratio [HR] = 3.54, 95% CI = 2.09 to 6.00, P <. 001), in men compared with women (0.28% per year vs 0.13% per year; HR = 2.11, 95% CI = 1.41 to 3.16, P <. 001), and in patients with low-grade dysplasia compared with no dysplasia (1.40% per year vs 0.17% per year; HR = 5.67, 95% CI = 3.77 to 8.53, P <. 001).
Conclusion: We found the risk of malignant progression among patients with BE to be lower than previously reported, suggesting that currently recommended surveillance strategies may not be cost-effective. © The Author 2011. Published by Oxford University Press. All rights reserved.