27 resultados para Growth process
Resumo:
Lysozyme is a naturally occurring enzyme in egg white and has high commercial importance due to its antimicrobial properties. The main objective of this work was to study the growth rate of lysozyme crystals isolated from egg for the first 72 hours and verify the results with McCabe’s constant crystal growth theory. Hanging drop crystallization method was used to form high purity lysozyme crystals from the embryonic stage. To this end, this work differs from an earlier work of Forsythe et al., who used seed crystals in the size range of 10 µm - 40 µm for face growth measurements at different pH values. The maximum crystal size recorded in the present work was 392.86 µm, which is within the typical size range of 50 µm - 500 µm for which constant crystal growth is expected to hold according to McCabe’s ?L law. Electron micrographs (SEM) revealed the structure and dimensions of the crystals while SDS-Page was used to measure the purity of the crystals. The SEM results showed that that lysozyme growth rate was linear and agreed with McCabe’s constant growth theory, producing a growth rate of 1.77 x 10-3 µm .s-1
Resumo:
A study of the components of the fruits of Kigelia pinnata was undertaken to identify compounds with potential growth inhibitory activity against human melanoma cells, since extracts from the fruits of this plant have been described in traditional medicine to have application in the treatment of skin cancer and other skin ailments. A bioactivity-guided fractionation process yielded a number of crude fractions, which demonstrated cytotoxicity in vitro against human melanoma cells. Compounds isolated and identified included the isocoumarins, demethylkigelin (1) and kigelin 2), fatty acids, oleic (3) and heneicosanoic acids (4), the furonaphthoquinone, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione (5), and ferulic acid (6). A number of structurally related synthetic compounds were also tested using the MTT assay. The most potent series of these compounds, the furonaphthoquinones, also demonstrated a cytotoxic effect in two human breast cancer cell lines tested.
Resumo:
In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
The growth of polycrystalline silicon (polysilicon) films from SiF4/SiH4/H2 gas mixtures is reported. The polysilicon films have been deposited in a multi process reactor by a PECVD process. The effect of r.f. power, chamber temperature and gas flow ratios on grain size and deposition rate have been determined. The fluorine concentration and the grain sizes of the films have been determined by SIMS and atomic force microscopy (AFM), respectively. Grain sizes in excess of 900 A are reported for layers deposited at 300°C. © 1999 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.
Resumo:
Mass spectrometric methods were developed and validated for the analysis in chicken muscle of a range of antibiotic growth promoters: spiramycin, tylosin, virginiamycin and bacitracin, and separately for two marker metabolites of carbadox (quinoxaline-2-carboxylic acid and 1,4-bisdesoxycarbadox), and a marker metabolite of olaquindox (3-methyl-quinoxaline-2-carboxylic acid). The use of these compounds as antibiotic growth promoters has been banned by the European Commission. This study aimed to develop methods to detect their residues in muscle samples as a means of checking for the use of these drugs during the rearing of broiler chickens. When fed growth-promoting doses for 6 days, spiramycin (31.4 mu g kg(-1)), tylosin (1.0 mu g kg(-1)), QCA (6.5 mu g kg(-1)), DCBX (71.2 mu g kg(-1)) and MQCA (0.2 mu g kg(-1)) could be detected in the muscle 0 days after the withdrawal of fortified feed. Only spiramycin could consistently be detected beyond a withdrawal period of 1 day. All analytes showed stability commercial cooking process, therefore raw or cooked muscle could be used for monitoring purposes.
Resumo:
Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.
Resumo:
In collaboration with Airbus-UK, the dimensional growth of small panels while being riveted with stiffeners is investigated. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using low and high fidelity nonlinear finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using high fidelity explicit finite element models. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
The vulnerability of coastal areas to associated hazards is increasing due to population growth, development pressure and climate change. It is incumbent on coastal governance regimes to address the vulnerability of coastal inhabitants to these hazards. This is especially so at the local level where development planning and control has a direct impact on the vulnerability of coastal communities. To reduce the vulnerability of coastal populations, risk mitigation and adaptation strategies need to be built into local spatial planning processes. Local government, however, operates within a complex hierarchal governance framework which may promote or limit particular actions. It is important, therefore, to understand how local coastal planning practices are shaped by national and supranational entities. Local governments also have to respond to the demands of local populations. Consequently, it is important to understand local populations’ perceptions of coastal risk and its management. Adopting an in-depth study of coastal planning in County Mayo, Ireland, this paper evaluates: (a) how European and national policies and legislation shape coastal risk management at local level; (b) the incorporation of risk management strategies into local plans; and (c) local perception of coastal risks and risk management. Despite a strong steer from supranational and national legislation and policy, statutory local plans are found to be lacking in appropriate risk mitigation or adaptation strategies. Local residents appear to be lulled into a sense of complacency towards these risks because of the low level of attention afforded to them by the local planning authorities. To avoid potentially disastrous consequences for local residents and businesses, it is imperative that this situation is redressed urgently. Based on our analysis, we recommend: the development and implementation of a national ICZM strategy, supported by detailed local ICZM plans; and obliging local government to address known risks in their plans rather than defer them to project level decision making.
Resumo:
Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown.
Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified.
Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C.
Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.
Resumo:
The demand for sustainable development has resulted in a rapid growth in wind power worldwide. Despite various approaches have been proposed to improve the accuracy and to overcome the uncertainties associated with traditional methods, the stochastic and variable nature of wind still remains the most challenging issue in accurately forecasting wind power. This paper presents a hybrid deterministic-probabilistic method where a temporally local ‘moving window’ technique is used in Gaussian Process to examine estimated forecasting errors. This temporally local Gaussian Process employs less measurement data while faster and better predicts wind power at two wind farms, one in the USA and the other in Ireland. Statistical analysis on the results shows that the method can substantially reduce the forecasting error while more likely generate Gaussian-distributed residuals, particularly for short-term forecast horizons due to its capability to handle the time-varying characteristics of wind power.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.