36 resultados para Givens rotations
Resumo:
A novel application-specific instruction set processor (ASIP) for use in the construction of modern signal processing systems is presented. This is a flexible device that can be used in the construction of array processor systems for the real-time implementation of functions such as singular-value decomposition (SVD) and QR decomposition (QRD), as well as other important matrix computations. It uses a coordinate rotation digital computer (CORDIC) module to perform arithmetic operations and several approaches are adopted to achieve high performance including pipelining of the micro-rotations, the use of parallel instructions and a dual-bus architecture. In addition, a novel method for scale factor correction is presented which only needs to be applied once at the end of the computation. This also reduces computation time and enhances performance. Methods are described which allow this processor to be used in reduced dimension (i.e., folded) array processor structures that allow tradeoffs between hardware and performance. The net result is a flexible matrix computational processing element (PE) whose functionality can be changed under program control for use in a wider range of scenarios than previous work. Details are presented of the results of a design study, which considers the application of this decomposition PE architecture in a combined SVD/QRD system and demonstrates that a combination of high performance and efficient silicon implementation are achievable. © 2005 IEEE.
Resumo:
An application specific programmable processor (ASIP) suitable for the real-time implementation of matrix computations such as Singular Value and QR Decomposition is presented. The processor incorporates facilities for the issue of parallel instructions and a dual-bus architecture that are designed to achieve high performance. Internally, it uses a CORDIC module to perform arithmetic operations, with pipelining of the internal recursive loop exploited to multiplex the two independent micro-rotations onto a single piece of hardware. The net result is a flexible processing element whose functionality can be changed under program control, which combines high performance with efficient silicon implementation. This is illustrated through the results of a detailed silicon design study and the applications of the techniques to a combined SVD/QRD system.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.
Resumo:
We show that homodyne measurements can be used to demonstrate violations of Bell's inequality with Gaussian states, when the local rotations used for these types of tests are implemented using nonlinear unitary operations. We reveal that the local structure of the Gaussian state under scrutiny is crucial in the performance of the test. The effects of finite detection efficiency are thoroughly studied and shown to only mildly affect the revelation of Bell violations. We speculate that our approach may be extended to other applications such as entanglement distillation where local operations are necessary elements besides quantum entanglement.
Resumo:
Positron annihilation in ammonia is analyzed using the framework of resonant annihilation [G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006)]. In particular, we show that molecular rotations can have a measurable e?ect on the annihilation rates at room temperatures. Rotation leads to broadening of vibrational Feshbach resonances. Rotations also allow a distinct contribution at low positron energies in the form of a rotational Feshbach resonance. This resonance can enhance the annihilation rate for thermalized room-temperature positrons. Comparison of theory and experiment shows that overtone and combination vibrations, including those due to inversion doubling, likely play an important role.
Resumo:
This paper introduces a new technique for palmprint recognition based on Fisher Linear Discriminant Analysis (FLDA) and Gabor filter bank. This method involves convolving a palmprint image with a bank of Gabor filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, FLDA is applied for dimensionality reduction and class separability. Since the palmprint features are derived from the principal lines, wrinkles and texture along the palm area. One should carefully consider this fact when selecting the appropriate palm region for the feature extraction process in order to enhance recognition accuracy. To address this problem, an improved region of interest (ROI) extraction algorithm is introduced. This algorithm allows for an efficient extraction of the whole palm area by ignoring all the undesirable parts, such as the fingers and background. Experiments have shown that the proposed method yields attractive performances as evidenced by an Equal Error Rate (EER) of 0.03%.
Resumo:
Recent advances in the study of quantum vibrations and rotations in the fundamental hydrogen molecules are reported. Using the deuterium molecules (D-2(+) and D-2) as exemplars, the application of ultrafast femtosecond pump-probe experiments to study the creation and time-resolved imaging of coherent nuclear wavepackets is discussed. The ability to study the motion of these fundamental molecules in the time-domain is a notable milestone, made possible through the advent of ultrashort intense laser pulses with durations on sub-vibrational (and sub-rotational) timescales. Quantum wavepacket revivals are characterised for both vibrational and rotational degrees of freedom and quantum models are used to provide a detailed discussion of the underlying ultrafast physical dynamics for the specialist and non-specialist alike. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: To quantify the use of cholinesterase inhibitors (ChEIs) and memantine in nursing home (NH) residents with dementia upon NH admission and 3 months later and to examine factors associated with reduction in therapy.
DESIGN: Retrospective cohort study.
SETTING: Nationwide sample of U.S. NHs.
PARTICIPANTS: Three thousand ?ve hundred six NH residents with dementia newly admitted in 2006.
MEASUREMENTS: Data from pharmacy dispensing records were used to determine ChEI and memantine medication use upon NH admission and at 3-month follow-up. The Minimum Data Set was used to determine resident- and facility-level characteristics. Severity of dementia was de?ned using the Cognitive Performance Scale (CPS).
RESULTS: Overall, 40.1% (n51,407) of newly admitted NH residents with dementia received ChEIs and memantine on NH admission. Use of ChEIs and memantine on admission was significantly greater in residents with mild to moderately severe dementia (41.2%) than in those with advanced dementia (33.3%, P5.001). After 3 months, ChEI and memantine use decreased by about half in both groups (48.6% with mild to moderately severe dementia vs 57.0% with advanced dementia, Po.05). NH residents with advanced dementia were significantly more likely reduce their use of ChEIs and memantine than those with mild to moderately severe dementia (odds ratio 51.44, 95% con?dence interval 51.03–2.01, P5.04).
CONCLUSION: Many NH residents with advanced dementia receive ChEIs and memantine upon NH admission, and approximately half of these decrease their medication use over the ensuing months. Further study is required to optimize use of ChEIs and memantine in NH populations and to determine the effects of withdrawing therapy on resident outcomes.
Resumo:
We investigated age-related changes in adaptation and sensory reintegration in postural control without vision. In two sessions, participants adapted their posture to sway reference and to reverse sway reference conditions, the former reducing (near eliminating) and the latter enhancing (near doubling) proprioceptive information for posture by means of support-surface rotations in proportion to body sway. Participants stood on a stable platform for 3 min (baseline) followed by 18 min of sway reference or reverse sway reference (adaptation) and finally again on a stable platform for 3 min (reintegration). Results showed that when inaccurate proprioception was introduced, anterior-posterior (AP) sway path length increased in comparable levels in the two age groups. During adaptation, young and older adults reduced postural sway at the same rate. On restoration of the stable platform in the reintegration phase, a sizeable aftereffect of increased AP path length was observed in both groups, which was greater in magnitude and duration for older adults. In line with linear feedback models of postural control, spectral analyses showed that this aftereffect differed between the two platform conditions. In the sway-referenced condition, a switch from low- to high-frequency COP sway marked the transition from reduced to normal proprioceptive information. The opposite switch was observed in the reverse sway referenced condition. Our findings illustrate age-related slowing in participants' postural control adjustments to sudden changes in environmental conditions. Over and above differences in postural control, our results implicate sensory reweighting as a specific mechanism highly sensitive to age-related decline.
Resumo:
Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.
Resumo:
A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.
Resumo:
Chiral thioureas and functionalised chiral thiouronium salts were synthesised starting from the relatively cheap and easily available chiral amines: (S)-methylbenzylamine and rosin-derived (+)-dehydroabietylamine. The introduction of a delocalised positive charge to the thiourea functionality, by an alkylation reaction at the sulfur atom, enables dynamic rotameric processes: hindered rotations about the delocalised CN and CS bonds. Hence, four different rotamers/isomers may be recognised: syn-syn, syn-anti, anti-syn and anti-anti. Extensive H-1 and C-13 NMR studies have shown that in hydrogen-bond acceptor solvents, such as perdeuteriated dimethyl sulfoxide, the syn-syn conformation is preferable. On the other hand, when using non-polar solvents, such as CDCl3, the mixture of syn-syn and syn-anti isomers is detectable, with an excess of the latter. Apart from this, in the case of S-butyl-N,N'-bis(dehydroabietyl)thiouronium ethanoate in CDCl3, the H-1 NMR spectrum revealed that strong bifurcated hydrogen bonding between the anion and the cation causes global rigidity without signs of hindered rotamerism observable on the NMR time scale. This suggested that these new salts might be used as NMR discriminating agents for chiral oxoanions, and are indeed more effective than their archetypal guanidinium analogues or the neutral thioureas. The best results in recognition of a model substrate, mandelate, were obtained with S-butyl-N,N'-bis(dehydroabietyl) thiouronium bistriflamide. It was confirmed that the chiral recognition occurred not only for carboxylates but also for sulfonates and phosphonates. Further H-1 NMR studies confirmed a 1 : 1 recognition mode between the chiral agent (host) and the substrate (guest); binding constants were determined by H-1 NMR titrations in solutions of DMSO-d(6) in CDCl3. It was also found that the anion of the thiouronium salt had a significant influence on the recognition process: anions with poor hydrogen-bond acceptor abilities led to the best discrimination. The presence of host-guest hydrogen bonding was confirmed in the X-ray crystal structure of S-butyl-N,N'-bis(dehydroabietyl)thiouronium bromide and by computational studies (density functional theory).
Resumo:
In this investigation, the seismic torsional response of a multi-storey concentrically braced frame (CBF) plan irregular structure is evaluated numerically and experimentally through a series of hybrid tests. CBF structures have become popular in seismic design because they are one of the most efficient types of steel structures to resist earthquake loading. However, their response under plan irregular conditions has received little focus mostly in part
due to their complex behaviour under seismic loading conditions. The majority of research on the seismic response of plan irregular structures is based purely on numerical investigations. This paper provides much needed experimental investigation of the seismic response of a CBF plan irregular structure with the aim of characterising the response of this class of structure. The effectiveness of the Eurocode 8 torsional effects provision as a method of designing for
low levels of mass eccentricity is evaluated. Results indicate that some of the observations made by purely numerical models are valid in that; torsionally stiff structures perform well and the stiff side of the structure is subjected to a greater ductility demand compared to the flexible side of the structure. The Eurocode 8 torsional effects provision is shown to be adequate in terms of ductility and interstorey drift however the structure performs poorly
in terms of floor rotation. Importantly, stiffness eccentricity occurs when the provision is applied to the structure when no mass eccentricity exists and results in a significant increase in floor rotations.
Resumo:
This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.
Resumo:
Large loads result in expensive foundations which are a substantial proportion of the capital cost of flap-type Wave Energy Converters (WECs). Devices such as Oyster 800, currently deployed at the European Marine Energy Centre (EMEC), comprise a single flap for the full width of the machine. Splitting a flap-type device into smaller vertical flap modules, to make a ‘modular-flap’, might reduce the total foundation loads, whilst still providing acceptable performance in terms of energy conversion.
This paper investigates the foundation loads of an undamped modular-flap device, comparing them to those for a rigid flap of an equivalent width. Physical modelling in a wave tank is used, with loads recorded using a six degree of freedom (DoF) load cell. Both fatigue and extreme loading analysis was conducted. The rotations of the flaps were also recorded, using a motion-tracking system.