152 resultados para Función renal
Resumo:
Background. Post-renal transplant anaemia is a potentially reversible cardiovascular risk factor. Graft function, immunosuppressive agents and inhibition of the renin-angiotensin system have been implicated in its aetiology. The evaluation of erythropoietin (EPO) levels may contribute to understanding the relative contributions of these factors. Methods. Two-hundred and seven renal transplant recipients attending the Belfast City Hospital were studied. Clinical and laboratory data were extracted from the medical records and laboratory systems. Results. Of the 207 patients (126 male), 47 (22.7%) were found to be anaemic (males, haemoglobin (Hb) <12 g/dl, females Hb <11g/dl). The anaemic group had a significantly higher mean serum creatinine level (162.8 µmol/l vs 131.0 µmol/l, P <0.001) and lower mean estimated glomerular filtration rate (eGFR) (41.5 ml/min vs 54.9 ml/min, P <0.001) than the non-anaemic group. Individual immunosuppressive regimens were comparable between those with and those without anaemia. Angiotensin converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) administration was not more prevalent in those with anaemia compared with those without (36.2 vs 38.8, P = 0.88). There was a significant inverse correlation between Hb levels and serum EPO levels (R = -0.29, P <0.001), but not between EPO levels and eGFR (R = 0.02, P = 0.74). Higher EPO levels were predictive of anaemia, independent of eGFR in multivariate analysis. Conclusion. Anaemia is common in post-renal transplant patients. The levels of renal function and serum EPO and not immunosuppressive regimens or ACE-I/ARB use, are strong and independent predictors of anaemia. © The Author [2007]. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Resumo:
Increased plasma homocysteine is an independent risk factor for cardiovascular disease. We have investigated homocysteine and B-group vitamin levels in renal transplant patients. Fasting blood was collected from 55 renal transplant recipients with good renal function and 32 age/sex matched control subjects. Total homocysteine was increased in transplant recipients in comparison to controls (10.9+/-1.5 vs. 6.7+/-1.3 micromol/l, P < 0.001). There was no difference in homocysteine between patients receiving cyclosporin (n = 39, homocysteine 11.0+/-1.5 micromol/l) and patients receiving prednisolone + azathioprine (n = 16, 10.8+/-1.6 micromol/l, mean+/-S.D.), although there was a significant correlation between homocysteine and serum cyclosporin concentration in the sub-group of patients receiving that immunosuppressive regimen (r = 0.42, P < 0.05). Levels of B-group vitamins were similar in patients and controls. Plasma homocysteine is increased in renal transplant recipients even in the presence of minor degrees of renal impairment and normal levels of B-group vitamins.
Resumo:
A combination of linkage analyses and association studies are currently employed to promote the identification of genetic factors contributing to inherited renal disease. We have standardized and merged complex genetic data from disparate sources, creating unique chromosomal maps to enhance genetic epidemiological investigations. This database and novel renal maps effectively summarize genomic regions of suggested linkage, association, or chromosomal abnormalities implicated in renal disease. Chromosomal regions associated with potential intermediate clinical phenotypes have been integrated, adding support for particular genomic intervals. More than 500 reports from medical databases, published scientific literature, and the World Wide Web were interrogated for relevant renal-related information. Chromosomal regions highlighted for prioritized investigation of renal complications include 3q13-26, 6q22-27, 10p11-15, 16p11-13, and 18q22. Combined genetic and physical maps are effective tools to organize genetic data for complex diseases. These renal chromosome maps provide insights into renal phenotype-genotype relationships and act as a template for future genetic investigations into complex renal diseases. New data from individual researchers and/or future publications can be readily incorporated to this resource via a user-friendly web-form accessed from the website: www.qub.ac.uk/neph-res/CORGI/index.php.
Resumo:
BACKGROUND.: High serum phosphate has been identified as an important contributor to the vascular calcification seen in patients with chronic kidney disease (Block et al., Am J Kidney Dis 1998; 31: 607). In patients on hemodialysis, elevated serum phosphate levels are an independent predictor of mortality (Block et al., Am J Kidney Dis 1998; 31: 607; Block, Curr Opin Nephrol Hypertens 2001; 10: 741). The aim of this study was to investigate whether an elevated serum phosphate level was an independent predictor of mortality in patients with a renal transplant.
METHODS.: Three hundred seventy-nine asymptomatic renal transplant recipients were recruited between June 2000 and December 2002. Serum phosphate was measured at baseline and prospective follow-up data were collected at a median of 2441 days after enrolment.
RESULTS.: Serum phosphate was significantly higher in those renal transplant recipients who died at follow-up when compared with those who were still alive at follow-up (P<0.001). In Kaplan-Meier analysis, serum phosphate concentration was a significant predictor of mortality (P=0.0001). In multivariate Cox regression analysis, serum phosphate concentration remained a statistically significant predictor of all-cause mortality after adjustment for traditional cardiovascular risk factors, estimated glomerular filtration rate, and high sensitivity C reactive protein (P=0.036) and after adjustment for renal graft failure (P=0.001).
CONCLUSIONS.: The results of this prospective study are the first to show that a higher serum phosphate is a predictor of mortality in patients with a renal transplant and suggest that serum phosphate provides additional, independent, prognostic information to that provided by traditional risk factors in the risk assessment of patients with a renal transplant.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Resumo:
Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.
Resumo:
Transcriptome analysis using microarray technology represents a powerful unbiased approach for delineating pathogenic mechanisms in disease. Here molecular mechanisms of renal tubulointerstitial fibrosis (TIF) were probed by monitoring changes in the renal transcriptome in a glomerular disease-dependent model of TIF ( adriamycin nephropathy) using Affymetrix (mu74av2) microarray coupled with sequential primary biological function-focused and secondary
Resumo:
PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.
MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.
RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.
CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.
Resumo:
BACKGROUND:
End-stage renal disease (ESRD) is increasingly prevalent but the inpatient costs associated with this condition are poorly defined due to limitations with data extraction and failure to differentiate between hospitalisation for renal and non-renal disease reasons. The impact of admissions primarily for the management of ESRD on hospital bed utilisation was assessed over a 5-year period in a large teaching hospital.
METHODS:
All admission episodes were reviewed and the ESRD group was identified by a primary International Classification of Diseases code for ESRD or a non-specific primary renal failure code with a secondary code for ESRD. The frequency and duration of hospitalisation and contribution to bed day occupancy of this group with ESRD was determined.
RESULTS:
There were 70,808 patients responsible for a total of 116,915 admissions and 919,212 bed days over the study period. Of these, 988 (1.4%) patients were admitted for the management of ESRD, accounting for 2,387 (2.0%) of admissions and utilisation of 23,011 (2.5%) bed days. After adjustment for age and gender, those admitted for ESRD management were significantly more likely to have a prolonged admission exceeding 30 days (odds ratio 1.46, 95% confidence interval 1.23-1.72, p < 0.001). When the admission was an emergency rather than an elective event, the patient was 4.6 times more likely to be hospitalised for over 30 days.
CONCLUSIONS:
Persons admitted for ESRD management are hospitalised more frequently and for longer than the overall inpatient population, occupying a substantial number of bed days.