42 resultados para Foam Prototyping
Resumo:
Rotational moulding is a unique manufacturing technique for the production of hollow plastic parts manufacturing. Moulds for rotational moulding are generally not standardized, such as for injection moulding, so each new mould must be completely manufactured except for a few ancillary parts like screws or clamps. The aim of this work has been to adapt and apply the advantages of rapid prototyping and electroforming technologies to try to achieve an innovative mould design for rotational moulding. The new innovative design integrates an electroformed shell, manufactured starting from a rapid prototyping mandrel, with different designed standard aluminium tools. The shell holder enables mould assembly with high precision a shell in a few minutes with the advantage of changing different geometries of the electroformed shells in the same tool. The overall mould cost is significantly decreased because it is only necessary to manufacture one or two shells each time, however the rest of the elements of the mould are standard and usable for an infinite number of shells, depending on size. The rapid prototyping of the mandrel enables a significant decrease the global cost of mould manufacturing as well. © 2008 Taylor & Francis Group.
Resumo:
The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a ZieglerNatta catalyzed foam and that foam density Is by far the most Influential factor over mechanical properties of foam. © 2004 Society of Plastics Engineers.
Resumo:
This paper presents a multi-language framework to FPGA hardware development which aims to satisfy the dual requirement of high-level hardware design and efficient hardware implementation. The central idea of this framework is the integration of different hardware languages in a way that harnesses the best features of each language. This is illustrated in this paper by the integration of two hardware languages in the form of HIDE: a structured hardware language which provides more abstract and elegant hardware descriptions and compositions than are possible in traditional hardware description languages such as VHDL or Verilog, and Handel-C: an ANSI C-like hardware language which allows software and hardware engineers alike to target FPGAs from high-level algorithmic descriptions. On the one hand, HIDE has proven to be very successful in the description and generation of highly optimised parameterisable FPGA circuits from geometric descriptions. On the other hand, Handel-C has also proven to be very successful in the rapid design and prototyping of FPGA circuits from algorithmic application descriptions. The proposed integrated framework hence harnesses HIDE for the generation of highly optimised circuits for regular parts of algorithms, while Handel-C is used as a top-level design language from which HIDE functionality is dynamically invoked. The overall message of this paper posits that there need not be an exclusive choice between different hardware design flows. Rather, an integrated framework where different design flows can seamlessly interoperate should be adopted. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware languages.
Resumo:
Key to various bone substitute scaffold production techniques is the development of free-flowing ceramic slurry with optimum theological properties. The aim is to achieve a colloidal suspension with as high a solid content as possible while maintaining a low viscosity which easily penetrates the pores of relevant sacrificial templates. The following investigation describes the optimization of a hydroxyapatite slip and demonstrates its potential application in scaffold production. Using predominantly spherical particles of hydroxyapatite of between 0.82 mu m and 16.2 mu m, coupled with a 2 wt % addition of the anionic polyelectrolyte, ammonium polyacrylate, an 80 wt % (55.9 vol %) hydroxyapatite solid loaded slip with a viscosity of approximately 126 mPa s has been developed. Its ability to infiltrate and replicate porous preforms has been shown using polyurethane foam. The enhanced particle packing achieved has allowed for the production of scaffolds with highly dense and uniform grain structures. The results represent a significant improvement in current slurry production techniques and can be utilized to develop high-density ceramic bone substitute scaffolds.
Resumo:
In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.
Resumo:
From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.
Resumo:
The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.
Resumo:
Oxidation of VLDL in vitro increases macrophage uptake and promotes foam cell formation, and the dyslipidaemia of chronic renal failure is characterised by an increase in VLDL. However, little information is available with regard to the susceptibility of VLDL to oxidation in patients at increased risk of atherosclerosis. We have therefore assessed the composition and susceptibility to oxidation of VLDL from haemodialysis patients anti control subjects. VLDL from haemodialysis patients contained increased lipid hydroperoxides (81.6 +/- 12.6 versus 16.1 +/- 3.4 nmol/mg protein, P
Resumo:
The production of complex inorganic forms, based on naturally occurring scaffolds offers an exciting avenue for the construction of a new generation of ceramic-based bone substitute scaffolds. The following study reports an investigation into the architecture (porosity, pore size distribution, pore interconnectivity and permeability), mechanical properties and cytotoxic response of hydroxyapatite bone substitutes produced using synthetic polymer foam and natural marine sponge performs. Infiltration of polyurethane foam (60 pores/in2) using a high solid content (80wt %), low viscosity (0.126Pas) hydroxyapatite slurry yielded 84-91% porous replica scaffolds with pore sizes ranging from 50µm - 1000µm (average pore size 577µm), 99.99% pore interconnectivity and a permeability value of 46.4 x10-10m2. Infiltration of the natural marine sponge, Spongia agaricina, yielded scaffolds with 56- 61% porosity, with 40% of pores between 0-50µm, 60% of pores between 50-500µm (average pore size 349 µm), 99.9% pore interconnectivity and a permeability value of 16.8 x10-10m2. The average compressive strengths and compressive moduli of the natural polymer foam and marine sponge replicas were 2.46±1.43MPa/0.099±0.014GPa and 8.4±0.83MPa /0.16±0.016GPa respectively. Cytotoxic response proved encouraging for the HA Spongia agaricina scaffolds; after 7 days in culture medium the scaffolds exhibited endothelial cells (HUVEC and HDMEC) and osteoblast (MG63) attachment, proliferation on the scaffold surface and penetration into the pores. It is proposed that the use of Spongia agaricina as a precursor material allows for the reliable and repeatable production of ceramic-based 3-D tissue engineered scaffolds exhibiting the desired architectural and mechanical characteristics for use as a bone 3 scaffold material. Moreover, the Spongia agaricina scaffolds produced exhibit no adverse cytotoxic response.
Resumo:
Macrophage cholesterol homeostasis is a key process involved in the initiation and progression of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) regulate the transcription of the genes involved in cholesterol homeostasis and thus represent an important therapeutic target in terms of reducing atherosclerosis. Conjugated linoleic acid (CLA) is a potent anti-atherogenic dietary fatty acid in animal models of atherosclerosis and is capable of activating PPARs in vitro and in vivo. Therefore, this study examined whether the anti-atherogenic effects of CLA in vivo could be ascribed to altered cholesterol homeostasis in macrophages and macrophage derived foam cells. Of several genes that regulate cholesterol homeostasis investigated, CLA had most effect on the class B scavenger receptor CD36. The cis-9,trans-11 CLA (c9,t11-CLA) and trans-10,cis-12 CLA (t10,c12-CLA) isomers augmented CD36 mRNA expression (P
Resumo:
A methodology which allows a non-specialist to rapidly design silicon wavelet transform cores has been developed. This methodology is based on a generic architecture utilizing time-interleaved coefficients for the wavelet transform filters. The architecture is scaleable and it has been parameterized in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is designed in such a way that the cores can also be cascaded without any interface glue logic for any desired level of decomposition. This parameterization allows the use of any orthonormal wavelet family thereby extending the design space for improved transformation from algorithm to silicon. Case studies for stand alone and cascaded silicon cores for single and multi-stage analysis respectively are reported. The typical design time to produce silicon layout of a wavelet based system has been reduced by an order of magnitude. The cores are comparable in area and performance to hand-crafted designs. The designs have been captured in VHDL so they are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
Berries are a good source of polyphenols, especially anthocyanins, micronutrients, and fiber. In epidemiological and clinical studies, these constituents have been associated with improved cardiovascular risk profiles. Human intervention studies using chokeberries, cranberries, blueberries, and strawberries (either fresh, or as juice, or freeze-dried), or purified anthocyanin extracts have demonstrated significant improvements in LDL oxidation, lipid peroxidation, total plasma antioxidant capacity, dyslipidemia, and glucose metabolism. Benefits were seen in healthy subjects and in those with existing metabolic risk factors. Underlying mechanisms for these beneficial effects are believed to include upregulation of endothelial nitric oxide synthase, decreased activities of carbohydrate digestive enzymes, decreased oxidative stress, and inhibition of inflammatory gene expression and foam cell formation. Though limited, these data support the recommendation of berries as an essential fruit group in a heart-healthy diet.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Resumo:
Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the atherogenic potential of certain plasma constituents, including low-density lipoprotein (LDL). Glycation of LDL is significantly increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls; enhanced uptake of LDL by macrophages, thus stimulating foam cell formation; increased platelet aggregation; formation of LDL-immune complexes; and generation of oxygen free radicals, resulting in oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterized by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation," occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long-lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age: in diabetes, their rate of accumulation is accelerated. Inhibition of glycation, oxidation, and glycoxidation may form the basis of future antiatherogenic strategies in both diabetic and nondiabetic individuals.
Resumo:
In people with diabetes, glycation of apolipoproteins correlates with other indices of recent glycemic control, including HbA1. For several reasons, increased glycation of apolipoproteins may play a role in the accelerated development of atherosclerosis in diabetic patients. Recognition of glycated LDL by the classical LDL receptor is impaired, whereas its uptake by human monocyte-macrophages is enhanced. These alterations may contribute to hyperlipidemia and accelerated foam-cell formation, respectively. Glycation of LDL also enhances its capacity to stimulate platelet aggregation. The uptake of VLDL from diabetic patients by human monocyte-macrophages is enhanced. This enhancement may be due, at least in part, to increased glycation of its lipoproteins. Glycation of HDL impairs its recognition by cells and reduces its effectiveness in reverse cholesterol transport. Glycation of apolipoproteins may also generate free radicals, increasing oxidative damage to the apolipoproteins themselves, the lipids in the particle core, and any neighboring macromolecules. This effect may be most significant in extravasated lipoproteins. In these, increased glycation promotes covalent binding to vascular structural proteins, and oxidative reactions may cause direct damage to the vessel wall. Glycoxidation, or browning, of sequestered lipoproteins may further enhance their atherogenicity. Finally, glycated or glycoxidized lipoproteins may be immunogenic, and lipoprotein-immune complexes are potent stimulators of foam-cell formation.