41 resultados para Energy optimization
Resumo:
In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.
Resumo:
The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.
Resumo:
The optimization of interrelated deposition parameters during deposition of in situ YBa2Cu3O7 thin films on MgO substrates by KrF laser ablation was systematically studied in a single experimental chamber. The optimum condition was found to be a substrate temperature of 720-degrees-C and a target-substrate distance of 5 cm in an oxygen partial pressure of 100 mTorr. These conditions produced films with T(c) = 87 K. The presence of YO in the plasma plume was found to be important in producing good quality films. The films were characterized by resistance-temperature measurements, energy dispersive x-ray analyses, scanning electron microscopy, and x-ray-diffraction measurements, and the physical reasons underlying film quality degradation at parameter values away from optimal are discussed.
Resumo:
Numerous studies have shown that postbuckling stiffened panels may undergo abrupt changes in buckled mode
shape when loaded in uniaxial compression. This phenomenon is often referred to as a mode jump or secondary
instability. The resulting sudden release of stored energy may initiate damage in vulnerable regions within a
structure, for example, at the skin-stiffener interface of a stiffened composite panel. Current design practice is to
remove a mode jump by increasing the skin thickness of the postbuckling region. A layup optimization methodology,
based on a genetic algorithm, is presented, which delays the onset of secondary instabilities in a composite structure
while maintaining a constant weight and subject to a number of design constraints. A finite element model was
developed of a stiffened panel’s skin bay, which exhibited secondary instabilities. An automated numerical routine
extracted information directly from the finite element displacement results to detect the onset of initial buckling and
secondary instabilities. This routine was linked to the genetic algorithm to find a revised layup for the skin bay, within
appropriate design constraints, to delay the onset of secondary instabilities. The layup optimization methodology,
resulted in a panel that had a higher buckling load, prebuckling stiffness, and secondary instability load than the
baseline design.
Resumo:
We consider a multiple femtocell deployment in a small area which shares spectrum with the underlaid macrocell. We design a joint energy and radio spectrum scheme which aims not only for co-existence with the macrocell, but also for an energy-efficient implementation of the multi-femtocells. Particularly, aggregate energy usage on dense femtocell channels is formulated taking into account the cost of both the spectrum and energy usage. We investigate an energy-and-spectral efficient approach to balance between the two costs by varying the number of active sub-channels and their energy. The proposed scheme is addressed by deriving closed-form expressions for the interference towards the macrocell and the outage capacity. Analytically, discrete regions under which the most promising outage capacity is achieved by the same size of active sub-channels are introduced. Through a joint optimization of the sub-channels and their energy, properties can be found for the maximum outage capacity under realistic constraints. Using asymptotic and numerical analysis, it can be noticed that in a dense femtocell deployment, the optimum utilization of the energy and the spectrum to maximize the outage capacity converges towards a round-robin scheduling approach for a very small outage threshold. This is the inverse of the traditional greedy approach. © 2012 IEEE.
Resumo:
A PMU based WAMS is to be placed on a weakly coupled section of distribution grid, with high levels of distributed generation. In anticipation of PMU data a Siemens PSS/E model of the electrical environment has been used to return similar data to that expected from the WAMS. This data is then used to create a metric that reflects optimization, control and protection in the region. System states are iterated through with the most desirable one returning the lowest optimization metric, this state is assessed against the one returned by PSS/E under normal circumstances. This paper investigates the circumstances that trigger SPS in the region, through varying generation between 0 and 110% and compromising the network through line loss under summer minimum and winter maximum conditions. It is found that the optimized state can generally tolerate an additional 2 MW of generation (3% of total) before encroaching the same thresholds and in one instance moves the triggering to 100% of generation output.
Resumo:
We investigate the basic behavior and performance of simulated quantum annealing (QA) in comparison with classical annealing (CA). Three simple one-dimensional case study systems are considered: namely, a parabolic well, a double well, and a curved washboard. The time-dependent Schrodinger evolution in either real or imaginary time describing QA is contrasted with the Fokker-Planck evolution of CA. The asymptotic decrease of excess energy with annealing time is studied in each case, and the reasons for differences are examined and discussed. The Huse-Fisher classical power law of double-well CA is replaced with a different power law in QA. The multiwell washboard problem studied in CA by Shinomoto and Kabashima and leading classically to a logarithmic annealing even in the absence of disorder turns to a power-law behavior when annealed with QA. The crucial role of disorder and localization is briefly discussed.
Resumo:
Non-Volatile Memory (NVM) technology holds promise to replace SRAM and DRAM at various levels of the memory hierarchy. The interest in NVM is motivated by the difficulty faced in scaling DRAM beyond 22 nm and, long-term, lower cost per bit. While offering higher density and negligible static power (leakage and refresh), NVM suffers increased latency and energy per memory access. This paper develops energy and performance models of memory systems and applies them to understand the energy-efficiency of replacing or complementing DRAM with NVM. Our analysis focusses on the application of NVM in main memory. We demonstrate that NVM such as STT-RAM and RRAM is energy-efficient for memory sizes commonly employed in servers and high-end workstations, but PCM is not. Furthermore, the model is well suited to quickly evaluate the impact of changes to the model parameters, which may be achieved through optimization of the memory architecture, and to determine the key parameters that impact system-level energy and performance.
Energy-Aware Rate and Description Allocation Optimized Video Streaming for Mobile D2D Communications
Resumo:
The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.
Resumo:
This paper presents a surrogate-model based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine’s previous operational performance, the DFIG’s stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization (PSO)-based surrogate optimization techniques are used in conjunction with the finite element method (FEM) to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.