37 resultados para Double layer
Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors
Resumo:
This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured. © 2010 The Institution of Engineering and Technology.
Resumo:
We report on the temporally and spatially resolved detection of the precursory stages that lead to the formation of an unmagnetized, supercritical collisionless shock in a laser-driven laboratory experiment. The measured evolution of the electrostatic potential associated with the shock unveils the transition from a current free double layer into a symmetric shock structure, stabilized by ion reflection at the shock front. Supported by a matching particle-in-cell simulation and theoretical considerations, we suggest that this process is analogous to ion reflection at supercritical collisionless shocks in supernova remnants.
Resumo:
The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolve into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
Single and double layer frequency selective surfaces (FSS) for Circular polarization (CP) operation were designed. The designed FSS provide reflection in the Ku-band (11.7 – 12.75 GHz) and transmission in the Ka-band (17.3 – 20.2 GHz). CP is conserved in each of the bands. For the double layer design over the Ku-band the reflection loss was less than 0.05 dB for TE and TM polarizations while the axial ratio was below 0.2 dB. Over the Ka-band transmission loss and axial ratio were each less than 0.25 dB.
Resumo:
This study describes the utilization of deep eutectic solvents (DESs) based on the mixture of the N-methylacetamide (MAc) with a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3) as electrolytes for carbon-based supercapacitors at 80 °C. The investigated DESs were formulated by mixing a LiX with the MAc (at xLi = 0.25). All DESs show the typical eutectic characteristic with eutectic points localized in the temperature range from −85 to −52 °C. Using thermal properties measured by differential scanning calorimetry (DSC), solid–liquid equilibrium phase diagrams of investigated LiX–MAc mixtures were then depicted and also compared with those predicted by using the COSMOThermX software. However, the transport properties of selected DESs (such as the conductivity (σ) and the fluidity (η–1)) are not very interesting at ambient temperature, while by increasing the temperature up to 80 °C, these properties become more favorable for electrochemical applications, as shown by the calculated Walden products: w = ση–1 (mS cm–1 Pa–1 s–1) (7 < w < 16 at 25 °C and 513 < w < 649 at 80 °C). This “superionicity” behavior of selected DESs used as electrolytes explains their good cycling ability, which was determined herein by cyclic voltammetry and galvanostic charge–discharge methods, with high capacities up to 380 F g–1 at elevated voltage and temperature, i.e., ΔE = 2.8 V and 80 °C for the LiTFSI–MAc mixture at xLi = 0.25, for example. The electrochemical resistances ESR (equivalent series resistance) and EDR (equivalent diffusion resistance) evaluated using electrochemical impedance spectroscopy (EIS) measurements clearly demonstrate that according to the nature of anion, the mechanism of ions adsorption can be described by pure double-layer adsorption at the specific surface or by the insertion of desolvated ions into the ultramicropores of the activated carbon material. The insertion of lithium ions is observed by the presence of two reversible peaks in the CVs when the operating voltage exceeds 2 V. Finally, the efficiency and capacitance of symmetric AC/AC systems were then evaluated to show the imbalance carbon electrodes caused by important lithium insertion at the negative and by the saturation of the positive by anions, both mechanisms prevent in fact the system to be operational. Considering the promising properties, especially their cost, hazard, and risks of these DESs series, their introduction as safer electrolytes could represent an important challenge for the realization of environmentally friendly EDLCs operating at high temperature.
Resumo:
This work provides a first-time-study of Azepanium-based ionic liquids (ILs) as electrolyte components for electrochemical double layer capacitors (EDLCs). Herein, two Azepanium-based ILs, namely N-methyl, N-butyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(14)TFSI) and N-methyl, N-hexyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(16)TFSI) were compared with the established IL N-butyl, N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr(14)TFSI) in terms of viscosity, conductivity, thermal stability and electrochemical behavior in EDLC systems. The ILs' operative potentials were found to be comparable, leading to operative voltages up to 3.5 V without significant electrolyte degradation.
Resumo:
This work provides a study of mixtures of the azepanium-based ionic liquid (IL) N-methyl, N-butyl-azepanium bis[(trifluoromethane) sulfonyl]imide (Azp14TFSI) and propylene carbonate (PC) as electrolyte components in electrochemical double layer capacitors (EDLCs). The considered mixtures' properties were then compared to the properties of mixtures of N-butyl, N-methylpyrrolidinium bis[(trifluoromethane) sulfonyl]imide (Pyr14TFSI) and PC in terms of viscosity, conductivity and electrochemical behavior. The mixtures' operative potentials were found to be comparable to each other, leading to operative voltages as high as 3.5 V, while retaining the low viscosities and high conductivities of PC based EDLC electrolytes.
Resumo:
The surface structure of the clean Co{1010BAR} surface and a c(2 x 2) potassium overlayer have been determined by quantitative low energy electron diffraction. The Co{1010BAR} sample has been shown to be laterally unreconstructed with the surface being uniquely terminated by an outermost closely packed double layer (dz12 = 0.68 angstrom). A damped oscillatory relaxation of the outermost three atomic layers occurs, with relaxations DELTA-dz12 = -6.5 +/- 2% and DELTA-dz23 = +1.0 +/- 2%.
The c(2 x 2) overlayer formed at a coverage of 0.5 ML was subjected to a full I-V analysis. A range of adsorption sites were tested including fourfold hollow, on-top, and both long and short bridge sites in combination with both "long" and "short" cobalt interlayer terminations. A clear preference was found for adsorption in the maximal coordination fourfold hollow site. No switching of surface termination occurs. The potassium adatoms reside in the [1210BAR] surface channels directly above second layer cobalt atoms with a potassium to outermost cobalt interlayer separation of 2.44 +/- 0.05 angstrom. Potassium-cobalt bond lengths of 3.40 +/- 0.05 and 3.12 +/- 0.05 angstrom between the four (one) outermost (second) layer nearest-neighbour substrate atoms suggests a potassium effective radius of 1.87 +/- 0.05 angstrom, somewhat smaller than the Pauling covalent radius and considerably larger than the ionic radius (1.38 angstrom). The alkali-surface bonding is thus predominantly "covalent"/"metallic".
Resumo:
The design of a high-performance IIR (infinite impulse response) digital filter is described. The chip architecture operates on 11-b parallel, two's complement input data with a 12-b parallel two's complement coefficient to produce a 14-b two's complement output. The chip is implemented in 1.5-µm, double-layer-metal CMOS technology, consumes 0.5 W, and can operate up to 15 Msample/s. The main component of the system is a fine-grained systolic array that internally is based on a signed binary number representation (SBNR). Issues addressed include testing, clock distribution, and circuitry for conversion between two's complement and SBNR.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.
Resumo:
A double layer circular polarization (CP) frequency selective surface (FSS) for use as a dual-band quasi-optical diplexer suitable for deployment in reflector antenna systems is described. The FSS was designed to reflect Ku band signals (11.7–12.75 GHz) while transmitting Ka band signals (17.3–20.2 GHz) and conserving CP in each of these bands. The simulated/measured reflection loss over the Ku band was less than 0.05/0.1 dB for both TE and TM polarizations, while the simulated/measured axial ratio was less than 0.2/0.75 dB. Over the Ka band, the simulated/measured transmission loss for both polarizations was below 0.25/0.4 dB and the simulated/measured axial ratio was less than 0.25/0.75 dB. To the best of our knowledge, this is the first report of a metallo-dielectric FSS that simultaneously operates in CP for an oblique angle of incidence in both Ku and Ka bands.
Resumo:
Carbons are the main electrode materials used in supercapacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density capacity will improve their potential for commercial implementation.
In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for supercapacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electrochemical double layer (ECDL) capacitance and energy density.
The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte.
This perspective will provide an overview of the current state of the art research on supercapacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance supercapacitors for different applications including those requiring mechanical flexibility and biocompatibility.
Resumo:
Background: Epididymal protease inhibitor (eppin) is a dual motif protein belonging to the whey acidic protein (WAP) family. Although expressed in numerous different tissues, to date, its functional characterisation is limited. It has been shown to exhibit antibacterial activity against Gram-negative bacteria (Escherichia coli) and antiprotease activity against some proteases of the serine protease family. We are interested in determining the role of eppin in innate immune defence. Objectives: This study aims to determine eppin's potential function in the innate immune response in the oral cavity by investigating the antimicrobial activity of eppin against relevant oral pathogens. Methods: Eppin was recombinantly expressed in E. coli cells and purified by immobilised metal affinity chromatography (IMAC). The antimicrobial effects of the protein were then assessed against two oral pathogens, Fusobacterium nucleatum and Candida albicans, using a double layer radial diffusion assay. Results: Eppin displayed antimicrobial activities against both oral pathogens tested and these activities were shown to be comparable to the well characterised antimicrobial peptide, LL-37. The antifungal effects of eppin were shown to be more potent than those of the human cathelicidin, LL-37. Conclusions: Eppin has been shown to possess both antibacterial and antifungal properties against oral pathogens, suggesting an important role for this protein in the innate immune response in the oral cavity. This study furthers our knowledge of the physiological role exerted by eppin and its possible role in the modulation of chronic diseases such as periodontitis and oral candidiasis.
Resumo:
Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.