118 resultados para Detection system
Resumo:
In this paper, we have developed a low-complexity algorithm for epileptic seizure detection with a high degree of accuracy. The algorithm has been designed to be feasibly implementable as battery-powered low-power implantable epileptic seizure detection system or epilepsy prosthesis. This is achieved by utilizing design optimization techniques at different levels of abstraction. Particularly, user-specific critical parameters are identified at the algorithmic level and are explicitly used along with multiplier-less implementations at the architecture level. The system has been tested on neural data obtained from in-vivo animal recordings and has been implemented in 90nm bulk-Si technology. The results show up to 90 % savings in power as compared to prevalent wavelet based seizure detection technique while achieving 97% average detection rate. Copyright 2010 ACM.
Resumo:
Cyber threats in Supervisory Control and Data Acquisition (SCADA) systems have the potential to render physical damage and jeopardize power system operation, safety and stability. SCADA systems were originally designed with little consideration of escalating cyber threats and hence the problem of how to develop robust intrusion detection technologies to tailor the requirements of SCADA is an emerging topic and a big challenge. This paper proposes a stateful Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method to improve the cyber-security of SCADA systems using the IEC 60870-5-104 protocol which is tailored for basic telecontrol communications. The proposed stateful protocol analysis approach is presented that is designed specifically for the IEC 60870-5-104 protocol. Finally, the novel intrusion detection approach are implemented and validated.
Resumo:
Residual recipient haematopoietic cells may coexist with donor haemopoietic tissue following BMT. This is known as mixed chimaerism. The incidence of mixed chimaerism varies with the sensitivity of the detection system used; DNA based methodologies are the most sensitive. The influence of mixed chimaerism on leukaemia relapse and graft rejection is unclear. The lineages in which mixed chimaerism occurs may affect outcome.
Resumo:
PURPOSE: To determine whether optical aberrations caused by cataract can be detected and quantified objectively using a newly described focus detection system (FDS). SETTING: The Wilmer Opthalmological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. METHODS: The FDS uses a bull's eye photodetector to measure the double-pass blur produced from a point source of light. To determine the range and level of focus, signals are measured with a series of trial lenses in the light path selected to span the point of best focus to generate focus curves. The best corrected visual acuity (BCVA), refractive error, lens photograph grades, and FDS signals were obtained in 18 patients scheduled to have cataract surgery. The tests were repeated 6 weeks after surgery. RESULTS: The mean FDS outcome measures improved after cataract surgery, with increased peak height (P=.001) and decreased peak width (P=.001). Improvement in signal strength (integral of signal within +/-1.5 diopters of the point of best focus) strongly correlated with improvement in peak height (R(2)=.88, P<.0001) and photographic cataract grade (R(2)=.72, P<.0001). The mean BCVA improved from 20/50 to 20/26 (P<.0001). The improvement in BCVA correlated more closely with FDS signal strength (R(2)=.44, P=.001) than with cataract grade (R(2)=.25, P=.06). CONCLUSIONS: Improvement in FDS outcome measures correlated with cataract severity and improvement in visual acuity. This objective approach may be useful in long-term studies of cataract progression.
Resumo:
To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.
Resumo:
Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.
Resumo:
The Gray Laboratory charged-particle microbeam has been used to assess the clonogenic ability of Chinese hamster V79 cells after irradiation of their nuclei with a precisely defined number of protons with energies of 1.0 and 3.2 MeV. The microbeam uses a 1-mum. silica capillary collimator to deliver protons to subcellular targets with high accuracy. The detection system is based on a miniature photomultiplier tube positioned above the cell dish, which detects the photons generated by the passage of the charged particles through an 18-mum-thick scintillator placed below the cells. With this system, a detection efficiency of greater than 99% is achieved. The cells are plated on specially designed dishes (3-mum-thick Mylar base), and the nuclei are identified by fluorescence microscopy. After an incubation period of 3 days, the cells are revisited individually to assess the formation of colonies from the surviving cells. For each energy investigated, the survival curve obtained for the microbeam shows a significant deviation below I Gy from a response extrapolated using the LQ model for the survival data above 1 Gy. The data are well fitted by a model that supports the hypothesis that radioresistance is induced by low-dose hypersensitivity. These studies demonstrate the potential of the microbeam for performing studies of the effects of single charged particles on cells in vitro. The hypersensitive responses observed are comparable with those reported by others using different radiations and techniques. (C) 2001 by Radiation Research Society.
Resumo:
In this study we report on the synthesis, kinetic characterization and application of a novel biotinylated and active-site-directed inactivator of cathepsin B. Thus the peptidyliazomethane biotinyl-Phe-Ala-diazomethane has been synthesized by a combination of solid-phase and solution methodologies and has been shown to be a very efficient inactivator of bovine and human cathepsin B. The respective apparent second-order rate constants (k0bs./[I]) for the inactivation of the human and bovine enzymes by this reagent, namely approximately 5.4 x 10(4) M-1 and approximately 7.8 x 10(4) M-1, compare very favourably with those values determined for the urethane-protected analogue benzloxycarbonyl-Phe-Ala-chloromethane first described by Green & Shaw [(1981) J.Biol. Chem. 256, 1923-1928], thus demonstrating that the presence of the biotin moiety at the P3 position is compatible with inhibitor effectiveness. The utilization of this reagent for the detection of cathepsin B in electrophoretic gels, using Western blotting and in combination with a streptavidin/alkaline phosphatase detection system, is also demonstrated. Given that the peptidydiazomethanes exhibit a pronounced reactivity towards cysteine proteinases, we feel that the present label may well constitute the archetypal example of a wide range of reagents for the selective labelling of this class of proteinase, even in a complex biological milieu containing additional classes of proteinases.
Resumo:
An optimised indirect peroxidase-anti-peroxidase immunohistochemical technique was used to detect endogenous biotin in frozen tissue sections from biotin-supplemented and biotin-depleted pigs and chickens. A monoclonal anti-biotin antibody was used as primary antibody in this technique. Immunoreactive biotin was detected in many tissues of both species including liver, kidney, pancreas, adipose tissue, adrenal gland, testis, brain, choroid plexus, cardiac and skeletal muscle, epithelium of the respiratory and digestive systems, skin and lymphoid tissues. The specificity of immunostaining for biotin was confirmed by the finding of reduced staining intensities in tissues of biotin-depleted animals compared to those of biotin-supplemented animals. The results of this study suggest that biotin has metabolic functions in a wider range of tissues than previously known. They also indicate that endogenous tissue biotin should be considered as a source of false positive staining when immunohistochemical or histochemical techniques which use avidin or streptavidin reagents or anti-biotin antibodies as components of the detection system, are applied to tissue sections.
Resumo:
A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.
Resumo:
Objective: To compare caries incidence following two different tooth replacement strategies for partially dentate older patients; namely functionally orientated treatment according to the principles of the Shortened Dental Arch (SDA) and conventional treatment using Removable Partial Dentures (RPDs). Method:A randomised controlled clinical trial (RCT) was conducted of partially dentate patients aged 65 years and older. Patients were randomly allocated to two different treatment groups: the RPD group and the SDA group. Each member of the RPD group was restored to complete arches with cobalt-chromium RPDs used to replace missing teeth. Patients in the SDA group were restored to a shortened arch of 10 occluding pairs of natural and replacement teeth using adhesive bridgework. All of the operative treatment was completed by a single operator. Caries incidence was measured over a 2-year period following treatment intervention and recorded using the International Caries and Detection System (ICDAS). Result:In total, 89 patients completed the RCT (45 SDAs and 44 RPDs). Patients in the RPD group recorded a significantly higher incidence of new carious lesions (p<0.001) and recurrent carious lesions (p<0.001) compared to the SDA group. A mixed model of covariance (ANCOVA) revealed that treatment group (p<0.001) and co-morbidity (p<0.001) were significant predictors of caries incidence. Conclusion:Two years after provision of prosthodontic treatment there was a significantly higher incidence of new and recurrent caries lesions in subjects provided with RPDs compared with SDA treatment. This will have a significant impact on the ongoing maintenance costs for these two treatment groups.
Resumo:
Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.
Resumo:
Experiences from smart grid cyber-security incidents in the past decade have raised questions on the applicability and effectiveness of security measures and protection mechanisms applied to the grid. In this chapter we focus on the security measures applied under real circumstances in today’s smart grid systems. Beginning from real world example implementations, we first review cyber-security facts that affected the electrical grid, from US blackout incidents, to the Dragonfly cyber-espionage campaign currently focusing on US and European energy firms. Provided a real world setting, we give information related to energy management of a smart grid looking also in the optimization techniques that power control engineers perform into the grid components. We examine the application of various security tools in smart grid systems, such as intrusion detection systems, smart meter authentication and key management using Physical Unclonable Functions, security analytics and resilient control algorithms. Furthermore we present evaluation use cases of security tools applied on smart grid infrastructure test-beds that could be proved important prior to their application in the real grid, describing a smart grid intrusion detection system application and security analytics results. Anticipated experimental results from the use-cases and conclusions about the successful transitions of security measures to real world smart grid operations will be presented at the end of this chapter.
Resumo:
This paper investigates camera control for capturing bottle cap target images in the fault-detection system of an industrial production line. The main purpose is to identify the targeted bottle caps accurately in real time from the images. This is achieved by combining iterative learning control and Kalman filtering to reduce the effect of various disturbances introduced into the detection system. A mathematical model, together with a physical simulation platform is established based on the actual production requirements, and the convergence properties of the model are analyzed. It is shown that the proposed method enables accurate real-time control of the camera, and further, the gain range of the learning rule is also obtained. The numerical simulation and experimental results confirm that the proposed method can not only reduce the effect of repeatable disturbances but also non-repeatable ones.
Resumo:
Sheep on the island of North Ronaldsay (Orkney, UK) feed mostly on seaweed, which contains high concentrations of dimethylated arsenoribosides. Wool of these sheep contains dimethylated, monomethylated and inorganic arsenic, in addition to unidentified arsenic species in unbound and complexed form. Chromatographic techniques using different separation mechanisms and detectors enabled us to identify five arsenic species in water extracts of wool. The wool contained 5.2 ± 2.3 μg arsenic per gram wool. About 80% of the arsenic in wool was extracted by boiling the wool with water. The main species is dimethylarsenic, which accounted for about 75 to 85%, monomethylated arsenic at about 5% and the rest is inorganic arsenic. Depending on the separation method and condition, the chromatographic recovery of arsenic species was between 45% for the anion exchange column, 68% for the size exclusion chromatography (SEC) and 82% for the cation exchange column. The SEC revealed the occurrence of two unknown arsenic compounds, of which one was probably a high molecular mass species. Since chromatographic recovery can be improved by either treating the extract with CuCl/HCl (CAT: 90%) or longer storage of the sample (CAT: 105%), in particular for methylated arsenic species, it can be assumed that labile arsenic -protein-like coordination species occur in the extract, which cannot be speciated with conventional chromatographic methods. It is clear from our study of sheep wool that there can be different kinds of 'hidden' arsenic in biological matrices, depending on the extraction, separation and detection methods used. Hidden species can be defined as species that are not recordable by the detection system, not extractable or do not elute from chromatographic columns. Copyright © 2003 John Wiley & Sons, Ltd.