114 resultados para DISSOLUTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids are shown to be good solvents for elemental sulfur, selenium, phosphorus and tellurium, and can be designed to maximise the solubility of these elements. The presence of the [S-3](center dot-) radical anion in diluted solutions of sulfur in some ionic liquids has been confirmed, and is the origin of their intense blue colour (cf. lapis lazuli).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidative dissolution of a number of different samples of chromium(III) oxide by periodate ions in 1 mol dm-3 HClO4 solution have been studied and the results interpreted using the inverse-cubic rate law. The metaperiodate acts as a two-electron oxidant and the overall reaction stoichiometry involves the reaction of 3 mol of periodate with 1 mol of Cr(III) oxide. From a detailed study of the kinetics of dissolution the rate-determining step appears to be the reaction between an adsorbed periodate ion and its associated Cr(III) oxide surface site, with inhibition by one of the reaction products, iodate, through competitive adsorption. Analysis of the kinetic data generates values for the Langmuir adsorption coefficients for periodate and iodate ions on highly hydrated Cr(III) oxide of 84 +/- 8 and 2600 +/- 370 dm3 mol-1, respectively. The Cr(III) oxide-periodate reaction has a high overall activation energy, 82 +/- 6 kJ mol-1. The kinetics of dissolution of highly hydrated Cr(III) oxide under conditions in which the simple inverse-cubic rate law function does not apply can be successfully predicted using a simple kinetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidative dissolution of ruthenium dioxide hydrate to ruthenium tetroxide by periodate ions, IO4-, in acidic solution are described. The kinetics of dissolution give a good fit to a 'soft-centre' model in which the particles of RuO2.xH2O are assumed to be monodispersed, spherical but inhomogeneous in composition, comprising a difficult-to-corrode outer shell and a more easy-to-corrode inner core. In this work metaperiodate appears to act as a two-electron oxidant. The observed kinetics fit a reaction scheme in which the rate-determining step is the reaction between a surface site and an adsorbed IO4 ion and there is competitive adsorption by any IO3- present. In the absence and presence of an excess of IO3- ions, the overall activation energy for the corrosion reaction was determined to be 38 +/- 2 and 54 +/- 4 kJ mol-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of continuous sonication and presonication on the kinetics of oxidative dissolution of ruthenium dioxide hydrate by bromate ions under acidic conditions are reported. Compared with unsonicated and presonicated dispersions the overall rate of dissolution of continuously sonicated dispersions is significantly greater due to a reduction in the average particle size and, hence, an increase in the specific surface area. Powder dispersions subjected to continuous ultrasound and presonication exhibit an initial induction period in their corrosion kinetics; the length of this induction period increases with increasing presonication. This corrosion feature is retained in the dissolution kinetics of powder samples which have been subjected to pre-ultrasound, but which are then stirred during the dissolution process. It is believed that this apparent permanent change in the nature of the powder particles is due to the ultrasound induced formation of a very thin layer of a largely unreactive form of ruthenium dioxide (possibly due to partial dehydration) on the surface of the powder particles. A kinetic scheme, based on this model, is used to account for the observed kinetics of dissolution of RuO2 . xH2O which have been subjected to both continuous sonication and presonication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.