61 resultados para Compressed workweek.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Installed wind capacity in the European Union is expected to continue to increase due to renewable energy targets and obligations to reduce greenhouse gas emissions. Renewable energy sources such as wind power are variable sources of power. Energy storage technologies are useful to manage the issues associated with variable renewable energy sources and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in electric power systems and can be used in each of the steps of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothening the variability of large penetrations of wind power. Compress Air Energy Storage is one such technology. The aim of this paper is to examine the technical and economic feasibility of a combined gas storage and compressed air energy storage facility in the all-island Single Electricity Market of Northern Ireland and the Republic of Ireland in order to optimise power generation and wind power integration. This analysis is undertaken using the electricity market software PLEXOS ® for power systems by developing a model of a combined facility in 2020.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In intelligent video surveillance systems, scalability (of the number of simultaneous video streams) is important. Two key factors which hinder scalability are the time spent in decompressing the input video streams, and the limited computational power of the processor. This paper demonstrates how a combination of algorithmic and hardware techniques can overcome these limitations, and significantly increase the number of simultaneous streams. The techniques used are processing in the compressed domain, and exploitation of the multicore and vector processing capability of modern processors. The paper presents a system which performs background modeling, using a Mixture of Gaussians approach. This is an important first step in the segmentation of moving targets. The paper explores the effects of reducing the number of coefficients in the compressed domain, in terms of throughput speed and quality of the background modeling. The speedups achieved by exploiting compressed domain processing, multicore and vector processing are explored individually. Experiments show that a combination of all these techniques can give a speedup of 170 times on a single CPU compared to a purely serial, spatial domain implementation, with a slight gain in quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation on compressive strength of unfired compressed brick obtained with coal combustion residues (CCRs) produced by the Niger Coal Society. Preliminary physical and optical (XRD and SEM) characterisation of coal slag, including lixiviation tests, have been carried out. Cement powder, lateritic clayey soil and sand have been chosen as stabilizing agents for bricks. 12 dosages have been tested and about 300 bricks have been produced with a hand-operated press. Results show uniaxial compressive strengths (UCSs) ranging from 4 MPa to 27 MPa for the highest cement stabilisation ratio. UCS higher than 7.5 MPa have been observed for stabilisation with 20% of laterite +10% cement after 45 days of curing. Obtained bricks showed good mechanical resistance and low weight. No health threat has been detected for the obtained samples. Study developments are oriented towards the analysis of Pozzolanic properties of CCRs, properties of hydrated lime stabilisation, thermal properties and durability assessment.© 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Niger Coal Society (Societé Nigérienne de Charbon – SONICHAR) produces electricity for local consumption in Tefereyre, 75 km north-west from Agadez, Niger. The coal combustion residuals production is about 150,000 tons per year. In order to reduce this environmental burden and to valorize these by-products, a study focusing on their physical and chemical features as well as on the mechanical resistance of compressed brick has been undertaken. Physical characterization of coal slag, chemical and lixiviation tests have been carried out, assessing the material main parameters, verifying the presence of hazardous composites and elements and comparing the obtained results with the findings of an in-deep literary review. Cement powder has been chosen as stabilizing agent as a preliminary option. Four different dosages have been tested and bricks have been produced with a hand-operated press. Compressive strength has been tested at different days of curing. Results show remarkable uniaxial compressive strengths (UCS) for all the mixes after cure, ranging from 4MPa up to more than 20MPa for the highest stabilization ratio. UCS higher than 5MPa have been observed for 20% and 30% cement stabilization ratios after only 7 days of cure, reaching respectively about 11MPa and 13MPa after 45 days. In conclusion obtained bricks show good mechanical resistance and low weight. No health threat has been detected from the obtained sample. Study developments are oriented towards the feasibility of the utilization of low-cost, locally available stabilization means, notably clay and cohesive soils, and on thermal properties assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly--lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioabsorbable. Degradation of PLLA proceeds through hydrolysis of the ester bonds in the polymer chains and is influenced significantly by the polymer's molecular weight and crystallinity. To evaluate the effects of processing and sterilisation on these properties, PLLA pellets were either compression moulded or extruded, subjected to annealing at 120°C for 4 h and sterilised by ethylene oxide (EtO) gas. Procedures were used to evaluate the mechanical properties, molecular weight and crystallinity. Upon processing, the crystallinity of the material fell from 61% for the PLLA pellets to 12% and 20% for the compressed and extruded components, respectively. After annealing, crystallinity increased to 43% for the compression-moulded material and 40% for the extruded material. Crystallinity further increased upon EtO sterilisation. A slight decrease in molecular weight was observed for the extruded material through processing, annealing and sterilisation. Young's modulus generally increased with increasing crystallinity, and extension at break and tensile strength decreased. The results from this investigation suggest that PLLA is sensitive to processing and sterilisation, altering properties critical to its degradation rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid heating of a compressed fusion fuel by a short-duration laser pulse is a promising route to generating energy by nuclear fusion1, and has been demonstrated on an experimental scale using a novel fast-ignitor geometry2. Here we describe a refinement of this system in which a much more powerful, pulsed petawatt (1015 watts) laser creates a fastheated core plasma that is scalable to fullscale ignition, significantly increasing the number of fusion events while still maintaining high heating efficiency at these substantially higher laser energies. Our findings bring us a step closer to realizing the production of relatively inexpensive, full-scale fast-ignition laser facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain the surface stress changes due to the adsorption of metal monolayers onto metallic surfaces, a new model derived from thermodynamic considerations is presented. Such a model is based on continuum Monte Carlo simulations with embedded atom method potentials in the canonical ensemble, and it is extended to consider the behavior on different islands adsorbed onto (111) substrate surfaces. Homoepitaxial and heteroepitaxial systems are studied. Pseudomorphic growth is not observed for small metal islands with considerable positive misfit with the substrate. Instead, the islands become compressed upon increase of their size. A simple model is proposed to interpolate between the misfits of atoms in small islands and the pseudomorphic behavior of the monolayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports an experimental study in which samples of soft kaolin clay (100 mm in diameter and 200 mm in height) were reinforced with vertical columns of sand and tested under triaxial conditions. Samples were reinforced with either a single column of sand of 32 mm diameter or three columns of sand, each of 20 mm diameter. The replacement method was used to form the columns. The columns were installed in the clay to depths of 120 and 200 mm. Tests were also carried out on samples that were not reinforced with sand columns. The samples were compressed under both drained and undrained conditions. It was found that the undrained shear strength of samples containing full-depth columns was greatly improved compared with that of the unreinforced samples. In the fully drained tests, the sample installed with a single column of 32 mm diameter exhibited better performance than the sample with three columns of 20 mm diameter, although the area replacement ratio in the case of the three 20 mm diameter columns was higher than that of the single 32 mm diameter column. However, the undrained strength of the composite material was not particularly affected by the number of columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.