29 resultados para Carcass and beef quality
Resumo:
The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.
Resumo:
This special issue volume is concerned with how technology is changing the nature of work and working conditions while generating new products and new forms of service delivery. The five articles included in this volume cover service work, from the routine and clerical through to highly credentialed and professional work. Although some of the established challenges concerning the impact of Information and Communication Technology (ICT) on work and workplaces are evident in the articles, it is also clear that new service delivery processes demand new skills and training to some extent. Overall findings indicate that while ICT competencies are important, they need to be supplemented by the soft skills that are crucial for effective customer interactions and more open work systems with greater autonomy and participation whereby flexible work teams can have a positive impact on job quality outcomes. This introductory article examines technology and the changing nature of work through three strands of interpretation, prior to introducing the five articles in this special issue.
Resumo:
Lower Cretaceous meandering and braided fluvial sandstones of the Nubian Formation form some of the most important subsurface reservoir rocks in the Sirt Basin, north-central Libya. Mineralogical, petrographical and geochemical analyses of sandstone samples from well BB6-59, Sarir oilfield, indicate that the meandering fluvial sandstones are fine- to very fine-grained subarkosic arenites (av. Q91F5L4), and that braided fluvial sandstones are medium- to very coarse-grained quartz arenites (av. Q96F3L1). The reservoir qualities of these sandstones were modified during both eodiagenesis (ca. <70oC; <2 km) and mesodiagenesis (ca. >70oC; >2km). Reservoir quality evolution was controlled primarily by the dissolution and kaolinitization of feldspars, micas and mud intraclasts during eodiagenesis, and by the amount and thicknessof grain-coating clays, chemical compaction and quartz overgrowths during mesodiagenesis. However, dissolution and kaolinitization of feldspars, micas and mud intraclasts resulted in the creation of intercrystalline micro- and mouldic macro-porosity and permeability during eodiagenesis, which were more widespread in braided fluvial than in meandering fluvial sandstones. This was because of the greater depositional porosity and permeability in the braided fluvial sandstones which enhanced percolation of meteoric waters. The development of only limited quartz overgrowths in the braided fluvial sandstones, in which quartz grains are coated by thick illite layers, retained high porosity and permeability (12-23 % and 30- 600 mD). By contrast, meandering fluvial sandstones underwent porosity loss as a result of quartz overgrowth development on quartz grains which lack or have thin and incomplete grain-coating illite (2-15 % and 0-0.1mD). Further loss of porosity in the meandering fluvial sandstones occurred as a result of chemical compaction (pressuredissolution) induced by the occurrence of micas along grains contacts. Otherdiagenetic alterations, such as the growth of pyrite, siderite, dolomite/ankerite and albitization, had little impact on reservoir quality. The albitization of feldspars may have had minor positive influence on reservoir quality throughthe creation of intercrystalline micro-porosity between albite crystals.The results of this study show that diagenetic modifications of the braided and meandering fluvial sandstones in the Nubian Formation, and resulting changes in reservoir quality, are closely linked to depositional porosity and permeability. They are also linked to the thickness of grain-coating infiltrated clays, and to variations in detrital composition, particularly the amounts of mud intraclasts, feldspars and mica grains as well as climatic conditions.
Resumo:
A core activity in information systems development involves building a conceptual model of the domain that an information system is intended to support. Such models are created using a conceptual-modeling (CM) grammar. Just as high-quality conceptual models facilitate high-quality systems development, high-quality CM grammars facilitate high-quality conceptual modeling. This paper provides a new perspective on ways to improve the quality of the semantics of CM grammars. For many years, the leading approach to this topic has relied on ontological theory. We show, however, that the ontological approach captures only half the story. It needs to be coupled with a logical approach. We explain how the ontological quality and logical quality of CM grammars interrelate. Furthermore, we outline three contributions that a logical approach can make to evaluating the quality of CM grammars: a means of seeing some familiar conceptual-modeling problems in simpler ways; the illumination of new problems; and the ability to prove the benefit of modifying existing CM grammars in particular ways. We demonstrate these benefits in the context of the Entity-Relationship grammar. More generally, our paper opens up a new area of research with many opportunities for future research and practice.
Resumo:
Sea lice continue to be one of the largest issues for the salmon farming industry and the use of ballan wrasse (Labrus bergylta) as a biological control is considered to be one of the most sustainable solutions in development. Broodstock management has proved challenging in the initial phases due to the significant lack of understanding of basic reproductive physiology and behaviour in the species. The aim of the study was to monitor captive breeding populations throughout a spawning season to examine timing and duration of spawning,quantify egg production, and look at seasonal changes in egg quality parameters as well as investigate the parental contribution to spawning events. A clear spawning rhythm was shown with 3-5 spawning periods inclusive of spawning windows lasting 1-9 days followed by inter spawning intervals of 8-12 days. Fertilization rate remained consistently high (> 87.5%) over the spawning season and did not differ significantly between spawning populations. Hatch rate was variable (0-97.5 %), but peaked in the middle of the spawning season. Meanoocyte diameter and gum layer thickness decreased slightly over the spawning season with no significant differences between spawning populations. Fatty acid (FA) profile of eggs remained consistent throughout the season and with the exception of high levels of ARA (3.8 ± 0.5 % of total FA) the FA profile was similar to that observed in other marine fish species. Parental contribution analysis showed 3 out of 6 spawning events to be single paired mating while the remaining 3 had contributions from multiple parents. Furthermore, the proposed multiple batch spawning nature of this species was confirmed with proof of a single femalecontributing to two separate spawning events. Overall this work represents the first comprehensive data set of spawning activity of captive ballan wrasse, and as such and will be helpful in formulating sustainable broodstock management plans for the species.
Resumo:
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R-2 = 0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (mu) = 15%), degree of tenderness (R-2 = 0.65, RMSEP% of mu = 18%), degree of juiciness (R-2 = 0.62, RMSEP% of mu = 16%), and overall acceptability (R-2 = 0.67, RMSEP% of mu = 11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R-2 = 0.15). Tentative interpretation of the plots of the regression coefficients suggests that the alpha-helix to beta-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.
Resumo:
Purpose: To quantify decreases in health-related quality of life (HRQoL) for given deterioration in clinical measures of vision; to describe the shape of these relationships; and to test whether the gradients of these relationships change with duration of visual loss.
Resumo:
A study of the external, loaded and unloaded quality factors for frequency selective surfaces (FSSs) is presented. The study is focused on THz frequencies between 5 and 30 THz, where ohmic losses arising from the conductors become important. The influence of material properties, such as metal thickness, conductivity dispersion and surface roughness, is investigated. An equivalent circuit that models the FSS in the presence of ohmic losses is introduced and validated by means of full-wave results. Using both full-wave methods as well as a circuit model, the reactive energy stored in the vicinity of the FSS at resonance upon plane-wave incidence is presented. By studying a doubly periodic array of aluminium strips, it is revealed that the reactive power stored at resonance increases rapidly with increasing periodicity. Moreover, it is demonstrated that arrays with larger periodicity-and therefore less metallisation per unit area-exhibit stronger thermal absorption. Despite this absorption, arrays with higher periodicities produce higher unloaded quality factors. Finally, experimental results of a fabricated prototype operating at 14 THz are presented.
Resumo:
Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.
Resumo:
Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.
Resumo:
Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.
Resumo:
Purpose of the research
To investigate the prevalence and nature of unmet needs among colorectal cancer (CRC) survivors and the relationship between needs and quality of life (QoL).
Methods and sample
Using the Northern Ireland Cancer Registry (NICR) as a sampling frame and working in collaboration with primary care physicians or GPs, the Cancer Survivors Unmet Needs (CaSUN) questionnaire and the Quality of Life in Adult Cancer Survivors Scale (QLACS) were posted to a randomly selected sample of 600 CRC survivors.
Key results
Approximately 69% (413/600) met eligibility criteria for participating in the study; and 30% (124/413) responded to the survey. A comparative analysis of NICR data between respondents and non-respondents did not indicate any systematic bias except that respondents appeared to be younger (65 years vs. 67 years). Approximately 60% of respondents reported having no unmet needs, with 40% reporting one or more unmet health and social care needs such as fear of recurrence, information needs, difficulty obtaining travel insurance and car parking problems. QoL was significantly lower for CRC survivors who reported an unmet need. Highest scores (poorer QoL) were reported for fatigue, welfare benefits and distress recurrence.
Conclusions
Overall, the majority of CRC survivors who had care needs appeared to have needs that were mainly psychosocial in nature and these unmet needs were related to poorer QoL.
Resumo:
Background: Implementing effective antenatal care models is a key global policy goal. However, the mechanisms of action of these multi-faceted models that would allow widespread implementation are seldom examined and poorly understood. In existing care model analyses there is little distinction between what is done, how it is done, and who does it. A new evidence-informed quality maternal and newborn care (QMNC) framework identifies key characteristics of quality care. This offers the opportunity to identify systematically the characteristics of care delivery that may be generalizable across contexts, thereby enhancing implementation. Our objective was to map the characteristics of antenatal care models tested in Randomised Controlled Trials (RCTs) to a new evidence-based framework for quality maternal and newborn care; thus facilitating the identification of characteristics of effective care.
Methods: A systematic review of RCTs of midwifery-led antenatal care models. Mapping and evaluation of these models’ characteristics to the QMNC framework using data extraction and scoring forms derived from the five framework components. Paired team members independently extracted data and conducted quality assessment using the QMNC framework and standard RCT criteria.
Results: From 13,050 citations initially retrieved we identified 17 RCTs of midwifery-led antenatal care models from Australia (7), the UK (4), China (2), and Sweden, Ireland, Mexico and Canada (1 each). QMNC framework scores ranged from 9 to 25 (possible range 0–32), with most models reporting fewer than half the characteristics associated with quality maternity care. Description of care model characteristics was lacking in many studies, but was better reported for the intervention arms. Organisation of care was the best-described component. Underlying values and philosophy of care were poorly reported.
Conclusions: The QMNC framework facilitates assessment of the characteristics of antenatal care models. It is vital to understand all the characteristics of multi-faceted interventions such as care models; not only what is done but why it is done, by whom, and how this differed from the standard care package. By applying the QMNC framework we have established a foundation for future reports of intervention studies so that the characteristics of individual models can be evaluated, and the impact of any differences appraised.