38 resultados para Capsule anchor implantation
Resumo:
The survival and growth of populations of the obligately anaerobic pathogenic bacterium Bacteroides fragilis enriched for large capsules (LCs), small capsules (SCs) or an electron-dense layer (EDL; non-capsulate by light microscopy) were examined in a mouse model of infection over a minimum period of 20 d. Chambers which allowed the influx of leukocytes, but not the efflux of bacteria, were implanted in the mouse peritoneal cavity. The LC and EDL populations consistently attained viable cell densities of the order of 10(8)-10(9) c.f.u. ml-1 within 24 h, whereas the SC population did not. However, after 3 d, all three bacterial populations maintained total viable numbers of 10(8)-10(9) c.f.u. ml-1 within the chambers. LC expression was selected against within 24 h in the model, the populations becoming non-capsulate by light microscopy, whereas in the SC population expression of the SC was retained by approximately 90% of the population. The EDL population remained non-capsulate by light microscopy throughout. Lymphocytes infiltrated the chambers to an equal extent for all three B. fragilis populations and at approximately 1000 times higher concentration than chambers which contained only quarter-strength Ringer's solution. The presence of neutrophils within the chambers did not cause a decrease in the total viable bacterial count. Each population elicited antibodies specific for outer-membrane proteins and polysaccharide, as detected by immunoblotting, which cross-reacted with the other populations. Differences were observed in the immunogenicity of the outer-membrane proteins within the three populations. Neutrophils were initially the predominant cell type in the chambers, but as the total leukocyte count increased with incubation time, neutrophils were outnumbered by other leukocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.
Resumo:
The means by which airway epithelial cells sense a bacterial infection and which intracellular signalling pathways are activated upon infection are poorly understood. A549 cells and human primary airway cells (NHBE) were used to investigate the response to infection with Klebsiella pneumoniae. Infection of A549 and NHBE with K. pneumoniae 52K10, a capsule polysaccharide (CPS) mutant, increased the surface levels of ICAM-1 and caused the release of IL-8. By contrast, the wild-type strain did not elicit these responses. Consistent with a functional role for these responses, there was a correlation between ICAM-1 levels and the number of adherent leukocytes on the epithelial cell surface. In addition, treatment of neutrophils with IL-8 enhanced their ability to kill K. pneumoniae. Strain 52K10 was internalized by A549 cells more efficiently than the wild-type, and when infections with 52K10 were performed in the presence of cytochalasin D the inflammatory response was abrogated. These findings suggest that cellular activation is mediated by bacterial internalization and that CPS prevents the activation through the blockage of bacterial adhesion and uptake. Collectively, the results indicate that bacterial internalization by airway epithelial cells could be the triggering signal for the activation of the innate immune system of the airway. Infection of A549 cells by 52K10 was shown to trigger the nuclear translocation of NF-kappaB. Evidence is presented showing that 52K10 activated IL-8 production through Toll-like receptor (TLR) 2 and TLR4 pathways and that A549 cells could use soluble CD14 as TLR co-receptor.
Resumo:
The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.
Resumo:
Aim: To evaluate the role of macrophages in the development of posterior capsule opacification (PCO). Methods: For this purpose, an extracapsular lens extraction was performed in 18 consecutive Sprague-Dawley rats. Animals were treated with liposomal clodronate (Cl MDP-lip-treated group, n = 10) or phosphate-buffered saline (PBS) (control group, n = 8) 1 day preoperatively and on the first day postoperatively, and sacrificed 3 days postoperatively. Masked clinical, light microscopy and immunohistochemistry studies were conducted. The Fisher exact test and randomisation test were used to assess statistically differences between groups. Results: A statistically significant reduction in the number of macrophages (ED1+, ED7+, ED8+) was found in the Cl MDP-lip-treated group compared with the PBS-lip-treated group (p = 0.048, p = 0.004, p = 0.027, respectively). There were no statistically significant differences with regards to the presence/absence of central opacification (p = 0.29) and capsular wrinkling (p = 0.21) as detected clinically between groups. Similarly, a qualitative evaluation of the degree of PCO with regards to lens epithelial cell (LEC) proliferation, capsular wrinkling and Soemmerring ring formation showed no statistically significance between groups (p = 0.27, p = 0.061, p = 1.0, respectively). However, a statistically significant reduction in the number of lens epithelial cells (LEC) counted in the centre of the posterior capsule was found in the Cl MDP-lip- treated group (p = 0.009). Conclusion: Depletion of macrophages was accompanied by a reduction in LEC in the centre of the posterior capsule in rodents.
Resumo:
PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Objective: To present a new model of posterior capsule opacification (PCO) in mice. Methods: An extracapsular lens extraction was performed in 28 consecutive mice. Animals were humanely killed 0 and 24 hours and 3 and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. Results: In 20 animals (71%), the eye appeared well healed before death. In 8 animals (29%), postoperative complications were noted. All animals developed PCO 2 weeks after surgery. Immediately after extracapsular lens extraction, lens epithelial cells were present in the inner surface of the anterior capsule and at the lens bow. At 24 hours, lens epithelial cells started to migrate toward the center of the posterior capsule. At 3 days, multilayered lens epithelial cells throughout the lens capsule and capsular wrinkling were apparent. Lens fibers and Soemmerring ring formation were observed 14 days after surgery. CD45 and CD11b macrophages were found in greater numbers 24 hours and 3 days after surgery (CD45 , P = .04 and P <.001, respectively; and CD11b , P = .01 and P = .004, respectively). The number of CD45 cells remained statistically significantly higher (P = .04) 14 days after surgery. Conclusion: In mice, PCO occurs following extracapsular lens extraction and is associated with low-grade but significant macrophage response. Clinical Relevance: The use of genetically modified mice to evaluate the pathogenic mechanisms of PCO and search for new therapeutic modalities to prevent or treat PCO is now possible.
Resumo:
PURPOSE: To report a new technique to correct tube position in anterior chamber after glaucoma drainage device implantation.
PATIENT AND METHODS: A patient who underwent a glaucoma drainage device implantation was noted to have the tube touching the corneal endothelium. A 10/0 polypropylene suture with double-armed 3-inch long straight needle was placed transcamerally from limbus to limbus, in the superior part of the eye, passing the needle in front of the tube.
RESULTS: The position of the tube in the anterior chamber was corrected with optimal distance from corneal endothelium and iris surface. The position remained satisfactory after 20 months of follow-up.
CONCLUSIONS: The placement of a transcameral suture offers a safe, quick, and minimal invasive intervention for the correction of the position of a glaucoma drainage device tube in the anterior chamber.
Resumo:
BACKGROUND AND OBJECTIVE: To evaluate the outcome of Baerveldt implantation with adjunctive mitomycin-C in cases of complicated glaucoma. PATIENTS AND METHODS: The authors reviewed the charts of all patients who had undergone Baerveldt implantation with mitomycin-C between January 1993 and March 1995. Success was defined before data collection as an intraocular pressure (IOP) between 5 and 21 mm Hg, with or without medications. The success rate was calculated using the Kaplan-Meier actuarial method. RESULTS: Twenty-nine patients were identified. The mean preoperative IOP was 33.6 mm Hg, with an average of 2.0 antiglaucoma medications. The probability of success at 6 and 12 months for patients who received mitomycin-C during Baerveldt implantation was 82.4% and 73.3%, respectively. Choroidal effusion with a flat anterior chamber (10.3%), corneal edema (6.8%), and conjunctival erosion (6.8%) were the most frequent complications. CONCLUSION: In this retrospective series of complicated glaucoma, the implantation of a Baerveldt drainage device with adjunctive mitomycin-C had a satisfactory outcome. The complications encountered and the clinical efficacy were comparable to those of previously reported series in which mitomycin-C was not used.
Resumo:
Purpose To evaluate the efficacy and safety of intraoperative mitomycin C (MMC) in eyes undergoing Ahmed Glaucoma Valve implantation. Design Randomized controlled clinical trial. Participants Sixty patients with refractory glaucoma. Intervention Sixty eyes of 60 patients with refractory glaucoma were randomized to receive intraoperative MMC (0.5 mg/ml for 5 minutes) (n = 34) or balanced salt solution (n = 26) during Ahmed Glaucoma Valve implantation. Main outcome measures Surgical success was defined according to 2 different criteria: (1) postoperative intraocular pressure (IOP) between 6 and 21 mmHg, with or without antiglaucoma medications, and (2) IOP reduction of at least 30% relative to preoperative values. Eyes requiring additional glaucoma surgery, developing phthisis, or showing loss of light perception were classified as failures. Success rates in both groups were compared using Kaplan-Meier survival curves and the log rank test. Other outcome measures were mean IOP, number of glaucoma medications, and complications. Results After a mean follow-up of 12.3 months, Kaplan-Meier survival analysis showed a probability of success of 59% at 18 months for the MMC group and 61% for the control group when the first criterion for success was used (IOP between 6 and 21 mmHg). When an IOP reduction of at least 30% was used as the criterion to define success, the Kaplan-Meier survival analysis demonstrated a probability of success at 18 months of 62% for the MMC group and 67% for the control group. There were no significant differences in survival rates between the 2 groups with either criterion (P = 0.75 and P = 0.37, respectively). After 15 days postoperatively, the mean IOP did not significantly differ for both MMC and control eyes. Mean numbers of postoperative antiglaucoma medications were similar in MMC-treated eyes and controls. There was no significant difference between the incidences of postoperative complications in both groups. Conclusion Mitomycin C did not increase the short- or intermediate-term success rates of Ahmed Glaucoma Valve implantation. © 2004 by the American Academy of Ophthalmology.