78 resultados para COUPLED LIGHT-EMISSION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We simulate the localized surface plasmon resonances of an Au nanoparticle within tunnelling proximity of an Au substrate. The results demonstrate that the calculated resonance energies can be identified with those experimentally detected for light emission from the tip-sample junction of a scanning tunnelling microscope. Relative to the modes of an isolated nanoparticle these modes show significant red-shifting, extending further into the infrared with increasing radius, primarily due to a proximity-induced lowering of the effective bulk plasmon frequency. Spatial mapping of the field enhancement factor shows an oscillatory variation of the field, absent in the case of a dielectric substrate; also the degree of localization of the modes, and thus the resolution achievable electromagnetically, is shown to depend primarily on the nanoparticle radius, which is only weakly dependent on wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of varying process parameters on atmospheric plasma characteristics and properties of nanometre thick siloxane coatings is investigated in a reel-to-reel deposition process. Varying plasma operation modes were observed with increasing applied power for helium and helium/oxygen plasmas. The electrical and optical behaviour of the dielectric barrier discharge were determined from current/voltage, emission spectroscopy and time resolved light emission measurements. As applied power increased, multiple discharge events occurred, producing a uniform multi-peak pseudoglow discharge, resulting in an increase in the discharge gas temperature. The effects of different operating modes on coating oxidation and growth rates were examined by injecting hexamethyldisiloxane liquid precursor into the chamber under varying operating conditions. A quenching effect on the plasma was observed, causing a decrease in plasma input power and emission intensity. Siloxane coatings deposited in helium plasmas had a higher organic component and higher growth rates than those deposited in helium/oxygen plasmas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent experimental results definitively showed, for the first time, optical radiation mediated by the slow mode surface plasmon polariton of metal-oxide-metal tunnel junctions. Here, dispersion curves for this mode are calculated. They are consistent with first-order grating coupling to light at the energies of the experimental emission peaks. The curves are then used to analyze second-order and high-energy (> 2.35 eV) grating coupling of the polaritons to radiation. Finally, variation of slow mode damping as a function of energy is used to explain qualitatively the relative experimental peak emission intensities and the absence of radiation peaks above 2.35 eV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel acousto-optic spectrometer (IfU Diagnostic Systems GmbH) for 2-dimensional (2D) optical emission spectroscopy with high spectral resolution has been developed. The spectrometer is based on acousto-optic tuneable filter technology with fast random wavelength access. Measurements for characterisation of the imaging quality, the spatial resolution, and the spectral resolution are presented. The applicability for 2D-space and phase resolved optical emission spectroscopy (2D-PROES) is shown. 2D-PROES has been applied to an inductively coupled plasma with radio frequency excitation at 13.56 MHz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have observed extreme-ultraviolet (XUV) ''line-free'' continuum emission from laser plasmas of high atomic number elements using targets irradiated with 248 nm laser pulses of 7 ps duration at a power density of similar to 10(13) W/cm(2). Using both dispersive spectroscopy and streak camera detection, the spectral and temporal evolution of XUV continuum emission for several target atomic numbers has been measured on a time scale with an upper limit of several hundred picoseconds limited by amplified spontaneous emission. (C) 1997 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is demonstrated that spatio-temporally resolved emission studies of a capacitively coupled gaseous electronics conference reference cell discharge can be used to determine changes in the heating mechanisms in such discharges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly anisotropic, beam-like neutron emission with peak flux of the order of 10^9 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by subpetawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHMdivergence angle of ~70 deg, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1Hand d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High time resolution observations of a white-light flare on the active star EQ PegB show evidence of intensity variations with a period of ≈10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively-excited, standing-acoustic wave in a flare loop, the period implies a loop length of ≈3.4 Mm and ≈6.8 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast-MHD wave, with the modulation of the emission being due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e., periodic reconnection).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of the search of the periodic changes of the 530.3 nm line intensity emitted by selected structures of the solar corona in the frequency range 1-10 Hz are presented. A set of 12 728 images of the section of the solar corona extending from near the north pole to the south-west were taken simultaneously in the 530.3 nm ("green") line and white-light with the Solar Eclipse Coronal Imaging System (SECIS) during the 143-seconds- long totality of the 1999 August 11 solar eclipse observed in Shabla, Bulgaria. The time resolution of the collected data is better than 0.05 s and the pixel size is approximately 4 arcsec. Using classical Fourier spectral analysis tools, we investigated temporal changes of the local 530.3 nm coronal line brightness in the frequency range 1-10 Hz of thousands of points within the field of view. The various photometric and instrumental effects have been extensively considered. We did not find any indisputable, statistically significant evidence of periodicities in any of the investigated points (at significance level alpha = 0.05).