45 resultados para BETA TITANIUM ALLOY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an emerging hole-machining methodology, helical milling process has become increasingly popular in aeromaterials manufacturing research, especially in areas of aircraft structural parts, dies, and molds manufacturing. Helical milling process is highly demanding due to its complex tool geometry and the progressive material failure on the workpiece. This paper outlines the development of a 3D finite element model for helical milling hole of titanium alloy Ti-6Al-4V using commercial FE code ABAQUS/Explicit. The proposed model simulates the helical milling hole process by taking into account the damage initiation and evolution in the workpiece material. A contact model at the interface between end-mill bit and workpiece has been established and the process parameters specified. Furthermore, a simulation procedure is proposed to simulate different cutting processes with the same failure parameters. With this finite element model, a series of FEAs for machined titanium alloy have been carried out and results compared with laboratory experimental data. The effects of machining parameters on helical milling have been elucidated, and the capability and advantage of FE simulation on helical milling process have been well presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this research we investigate the performance of drilling process in carbon fibre reinforced composite (CFC) material, titanium alloy and the hybrid stack of these two materials, using coated carbide drill bit. We study the effect of the process parameters such as the feed rate and speed on the induced forces and torques, also on the wear of drill and surface roughness of the holes. In the composite material the percentage of surface damage in both drilling CFC on its own and drilling in stack form is estimated. Also, the effect of worn drill on the surface damage is identified. In the titanium, the burr formation in stack and non-stack form is investigated. The wear of the drill results in increased forces and torques required for drilling. This increases the surface delaminations substantially at the entrance in drilling of CFC. However, the surface roughness of the holes reduces with the wear of the drill in CFC drilling. Also, the surface delamination and surface roughness of the holes in the CFC whilst drilled in hybrid form reduces significantly. This is despite the increase of the forces and torques required in drilling CFC in stack form. Copyright © 2012 Inderscience Enterprises Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With a significant growth in the use of titanium alloys in the aviation manufacturing industry, the key challenge of making high-quality holes in the aircraft assembly process needs to be addressed. In this work, case studies deploying traditional drilling and helical milling technologies are carried out to investigate the tool life and hole surface integrity for hole-making of titanium alloy. Results show that the helical milling process leads to much longer tool life, generally lower hole surface roughness, and higher hole subsurface microhardness. In addition, no plastically deformed layer or white layer has been observed in holes produced by helical milling. In contrast, a slightly softened region was always present on the drilled surface. The residual stress distributions within the hole surface, including compressive and tensile residual stress, have also been investigated in detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, the impact of conventional drilling and helical milling processes on the fatigue response Ti-6Al-4V (grade 5 titanium alloy) has been presented. Results show that the work pieces produced by helical milling has a 119% longer fatigue life compared with the drilled pieces under dry machining condition, and a 96% longer fatigue life for helical milled piece under lubricated condition. The use of cutting fluid has led to longer fatigue lives – 15% longer for drilling and 3% longer for helical milling. Other results such as the machined surface roughness, alloy surface and sub-surface microstructures have also been studied in details.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction between the face coat material of a mould and the titanium alloy will cause oxygen penetration during the casting and solidification process, resulting in the formation of an α-case interaction layer at the metal surface that influences the mechanical properties of the cast components. In this study, the influence of α-case thickness and loading positions in a Ti–6Al–4V (Ti64) alloy on metal hardness, impact properties and bending strength was investigated. The results showed that the metal surface α-case consisted of many coarse α laths which has a higher hardness than metal matrix. The mechanical properties of the alloy are influenced by the α-case. The alloy bending strength was observed to have changed linearly with the thickness of sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an FEM analysis conducted for optimally designing end mill cutters through verifying the cutting tool forces and stresses for milling Titanium alloy Ti-6Al-4 V. Initially, the theoretical tool forces are calculated by considering the cutting edge on a cutting tool as the curve of an intersection over a spherical/flat surface based on the model developed by Lee & Altinas [1]. Considering the lowest tool forces the cutting tool parameters are taken and optimal design of end mill is decided for different sizes. Then the 3D CAD models of the end mills are developed and used for Finite Element Method to verify the cutting forces for milling Ti-6Al-4 V. The cutting tool forces, stress, strain concentration (s), tool wear, and temperature of the cutting tool with the different geometric shapes are simulated considering Ti-6Al-4 V as work piece material. Finally, the simulated and theoretical values are compared and the optimal design of cutting tool for different sizes are validated. The present approach considers to improve the quality of machining surface and tool life with effects of the various parameters concerning the oblique cutting process namely axial, radial and tangential forces. Various simulated test cases are presented to highlight the approach on optimally designing end mill cutters.