27 resultados para B-CELL EPITOPES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We performed an immunogenetic analysis of 345 IGHV-IGHD-IGHJ rearrangements from 337 cases with primary splenic small B-cell lymphomas of marginal-zone origin. Three immunoglobulin (IG) heavy variable (IGHV) genes accounted for 45.8% of the cases (IGHV1-2, 24.9%; IGHV4-34, 12.8%; IGHV3-23, 8.1%). Particularly for the IGHV1-2 gene, strong biases were evident regarding utilization of different alleles, with 79/86 rearrangements (92%) using allele (*)04. Among cases more stringently classified as splenic marginal-zone lymphoma (SMZL) thanks to the availability of splenic histopathological specimens, the frequency of IGHV1-2(*)04 peaked at 31%. The IGHV1-2(*)04 rearrangements carried significantly longer complementarity-determining region-3 (CDR3) than all other cases and showed biased IGHD gene usage, leading to CDR3s with common motifs. The great majority of analyzed rearrangements (299/345, 86.7%) carried IGHV genes with some impact of somatic hypermutation, from minimal to pronounced. Noticeably, 75/79 (95%) IGHV1-2(*)04 rearrangements were mutated; however, they mostly (56/75 cases; 74.6%) carried few mutations (97-99.9% germline identity) of conservative nature and restricted distribution. These distinctive features of the IG receptors indicate selection by (super)antigenic element(s) in the pathogenesis of SMZL. Furthermore, they raise the possibility that certain SMZL subtypes could derive from progenitor populations adapted to particular antigenic challenges through selection of VH domain specificities, in particular the IGHV1-2(*)04 allele.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZAP-70, CD38 and IGHV mutations have all been reported to have prognostic impact in chronic lymphocytic leukemia (CLL), both individually and in paired combinations. We aimed to determine whether the combination of all three factors provided more refined prognostic information concerning the treatment-free interval (TFI) from diagnosis. ZAP-70, CD38 and IGHV mutations were evaluated in 142 patients. Combining all three factors, the ZAP-70-/CD38-/Mutated group showed the longest median TFI (62 months, n = 37), ZAP-70+/CD38+/Unmutated cases the shortest (11 months, n = 37) and cases discordant for > or = 1 factor, an intermediate TFI (27 months, n = 68) (p = 0.006). Analysis of discordant cases revealed values that were otherwise masked when measuring single prognostic factors. The presence or absence of cytogenetic abnormalities did not explain the variability among discordant cases. Simultaneous analysis of ZAP-70, CD38 and IGHV mutations in CLL provides more discriminatory prediction of TFI than any factor alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to rearrange the germ-line DNA to generate antibody diversity is an essential prerequisite for the production of a functional repertoire. While this is essential to prevent infections, it also represents the "Achilles heel" of the B-cell lineage, occasionally leading to malignant transformation of these cells by translocation of protooncogenes into the immunoglobulin (Ig) loci. However, in evolutionary terms this is a small price to pay for a functional immune system. The study of the configuration and rearrangements of the Ig gene loci has contributed extensively to our understanding of the natural history of development of myeloma. In addition to this, the analysis of Ig gene rearrangements in B-cell neoplasms provides information about the clonal origin of the disease, prognosis, as well as providing a clinical useful tool for clonality detection and minimal residual disease monitoring. Herein, we review the data currently available on both Ig gene rearrangements and protein patterns seen in myeloma with the aim of illustrating how this knowledge has contributed to our understanding of the pathobiology of myeloma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Analysis of IgH rearrangements in B-cell malignancies has provided clinical researchers with a wide range of information during the last few years. However, only a few studies have contributed to the characterization of these features in multiple myeloma (MM), and they have been focused on the analysis of the expressed IgH allele only. Comparison between the expressed and the non-functional IgH alleles allows further characterizion of the selection processes to which pre-myeloma cells are submitted. DESIGN AND METHODS: We analyzed a cohort of 84 untreated MM patients in order to characterize their functional VDJH and non-functional DJH rearrangements. The pattern of mutations and gene segment usage for both types of rearrangements was analyzed by polymerase chain reaction and sequencing. RESULTS: VH3 and VH1 family members were over- and under-represented, respectively. VH3-30 and VH3-15 segments were the most frequently used, whereas VH4-34 was found only in non-functional or heavily mutated VDJH rearrangements. DH2 and DH3 family members were over-represented in both VDJH and DJH repertoires, while the DH1 family was under-represented only in the productive VDJH rearrangements. Finally, DH3-22 and DH2-21 gene segments were found to be over-represented in the functional repertoire while segments commonly used by less mature B-cell malignancies, such as DH6-19 or DH3-3, were under-represented. INTERPRETATION AND CONCLUSIONS: Data reported here help to identify the clonogenic MM cell as a post-germinal center B cell that has undergone selection processes during the germinal center reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of Ig genes in B-cell malignancies has become an essential method in molecular diagnosis, and polymerase chain reaction (PCR) amplification of Ig heavy chain gene (IgH) rearrangements is now widely used for detection of clonality and minimal residual disease (MRD). Although several different sensitive protocols are now available for PCR analysis of IgH genes, they are frequently hampered owing to the high rate of somatic hypermutation present in multiple myeloma (MM). We recently described a new approach using incomplete DJH rearrangements as an alternative target. About 60% of MM samples contain an incomplete DJH rearrangement, 90% of them lacking on somatic mutations. This approach allows resolution of problems derived from primer mismatches, making DJH rearrangement a reliable and sensitive target for detection of clonality and MRD investigation in MM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a series of Spanish patients with acute lymphoblastic leukaemia in whom the t(12;21) [TEL/AML1] translocation could not be identified with two sensitive techniques: reverse transcript-polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH). 101 cases were analysed: 38 children (29 B-cell precursor; nine T-cell precursor) and 63 adults (48 B-cell precursor; 15 T-cell precursor). Specific RT-PCR to amplify the TEL/AML1 fusion transcript was negative in all 101 cases. Moreover, all 38 paediatric samples were also negative by interphase FISH analysis for the presence of the TEL/AML1 fusion. These results suggest the existence of geographic/race variations in the genotype of acute lymphoblastic leukaemia (ALL).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Molecular analysis by PCR of monoclonally rearranged immunoglobulin (Ig) genes can be used for diagnosis in B-cell lymphoproliferative disorders (LPD), as well as for monitoring minimal residual disease (MRD) after treatment. This technique has the risk of false-positive results due to the "background" amplification of similar rearrangements derived from polyclonal B-cells. This problem can be resolved in advance by additional analyses that discern between polyclonal and monoclonal PCR products, such as the heteroduplex analysis. A second problem is that PCR frequently fails to amplify the junction regions, mainly due to somatic mutations frequently present in mature (post-follicular) B-cell lymphoproliferations. The use of additional targets (e.g. Ig light chain genes) can avoid this problem. DESIGN AND METHODS: We studied the specificity of heteroduplex PCR analysis of several Ig junction regions to detect monoclonal products in samples from 84 MM patients and 24 patients with B cell polyclonal disorders. RESULTS: Using two distinct VH consensus primers (FR3 and FR2) in combination with one JH primer, 79% of the MM displayed monoclonal products. The percentage of positive cases was increased by amplification of the Vlamda-Jlamda junction regions or kappa(de) rearrangements, using two or five pairs of consensus primers, respectively. After including these targets in the heteroduplex PCR analysis, 93% of MM cases displayed monoclonal products. None of the polyclonal samples analyzed resulted in monoclonal products. Dilution experiments showed that monoclonal rearrangements could be detected with a sensitivity of at least 10(-2) in a background with >30% polyclonal B-cells, the sensitivity increasing up to 10(-3) when the polyclonal background was