44 resultados para Altitudinal belt
Resumo:
Vermiculite minerals are locally available in the Mozambique Belt of Tanzania but are not currently commercially exploited. In part this may be due to lack of any precise characterization. This study was carried out as a first step to assess the suitability of these vermiculites for crop production by characterization of their mineralogical and chemical compositions. X-ray diffraction and scanning electron microscopy combined with an energydispersive X-ray system were used to establish the mineralogy. Electron microprobe analysis and inductively coupled plasma-mass spectrometry were used to study the chemical compositions and to identify any possible issues related to chemical composition that might affect their use if applied as soil conditioners. The samples were characterized as vermiculites and hydrobiotites with a wide variety of accessory minerals. Accessory minerals that might be of some concern are galena, fibrous amphiboles and sepiolite. The total levels of Ni in all vermiculites, and Cr in some, were also found to be high relative to common European standards and this might limit their potential as soil conditioners. It is clear that a field assessment of the bioavailability of various elements would be necessary before decisions relating to potential agricultural use could be made. © 2009 The Mineralogical Society.
Resumo:
The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of ∼ 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1: 0.85 ± 0.13: 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.
Resumo:
The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.
Resumo:
We describe the results of a ground-based observational "snapshot" study of Jupiter-family comets in the heliocentric range 2.29 AU less than or equal to R-h less than or equal to 5.72 AU. Results are presented based on observations from the 1m JKT on the island of La Palma. A total of 25 comets were targeted with 15 being positively detected. Broad-band VRI photometry was performed to determine dimensions, colour indices, and dust production rates in terms of the "A frho" formalism. The results for selected comets are compared with previous investigations. Ensemble properties of the Jupiter- family population have been investigated by combining the results presented here with those of Lowry et al. (1999), and Lowry & Fitzsimmons (2001). We find that the cumulative size distribution of the Jupiter-family comets can be described by a power law of the form; Sigma(> r) proportional to r(-1.6+/- 0.1). This size distribution is considerably shallower than that found for the observed Edgeworth-Kuiper belt objects, which may reflect either an intrinsic difference at small km- sizes in the belt, or the various processes affecting the nuclei of comets as their orbits evolve from the Edgeworth- Kuiper belt to the inner Solar system. Also, there would appear to be no correlation between nuclear absolute magnitude and perihelion distance. Finally, for the sample of active comets, there is a distinct correlation between absolute R band magnitude and perihelion distance, which can be explained by either a discovery bias towards brighter comets or in terms of "rubble" mantle formation.
Resumo:
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Investigations of geomorphology, geoarchaeology, pollen, palynofacies, and charcoal indicate the comparative scales and significance of palaeoenvironmental changes throughout the Holocene at the junction between the hyper-arid hot Wadi â??Arabah desert and the front of the Mediterranean-belt Mountains of Edom in southern Jordan through a series of climatic changes and episodes of intense mining and smelting of copper ores. Early Holocene alluviation followed the impact of Neolithic grazers but climate drove fluvial geomorphic change in the Late Holocene, with a major arid episode corresponding chronologically with the â??Little Ice Ageâ?? causing widespread alluviation. The harvesting of wood for charcoal may have been sufficiently intense and widespread to affect the capacity of intensively harvested tree species to respond to a period of greater precipitation deduced for the Roman-Byzantine period - a property that affects both taphonomic and biogeographical bases for the interpretation of palynological evidence from arid-lands with substantial industrial histories. Studies of palynofacies have provided a record of human and climatic causes of soil erosion, and the changing intensity of the use of fire over time. The patterns of vegetational, climatic change and geomorphic changes are set out for this area for the last 8000 years.
Resumo:
Jupiter Family comets (JFCs) are short period comets which have recently entered the inner solar system, having previously orbited in the Kuiper Belt since the formation of the planets. We used two nights on the 3.6 m New Technology Telescope (NTT) at the European Southern Observatory, to obtain VRI photometry of three JFCs; 7P/Pons-Winnecke, 14P/Wolf and 92P/Sanguin. These were observed to be stellar in appearance. We find mean effective radii of 2.24 ± 0.02 km for 7P, 3.16 ± 0.01 km for 14P and 2.08 ± 0.01 km for 92P, assuming a geometric albedo of 0.04. From light-curves for each comet we find rotation periods of 7.53 ± 0.10 and 6.22 ± 0.05 h for 14P and 92P respectively. 7P exhibits brightness variations which imply a rotation period of 6.8 = Prot = 9.5 h. Assuming the nuclei to be ellipsoidal the measured brightness variations imply minimum axial ratios a/b of 1.3 ± 0.1 for 7P and 1.7 ± 0.1 for both 14P and 92P. This in turn implies minimum densities of 0.23 ± 0.08 g cm-3 for 7P, 0.32 ± 0.02 g cm-3 for 14P and 0.49 ± 0.06 g cm-3 for 92P. Finally, we measure colour indices of (V-R) = 0.40 ± 0.05 and (R-I) = 0.41 ± 0.06 for 7P/Pons-Winnecke, (V-R) = 0.57 ± 0.07 and (R-I) = 0.51 ± 0.06 for 14P/Wolf, and (V-R) = 0.54 ± 0.04 and (R-I) = 0.54 ± 0.04 for 92P/Sanguin.
Resumo:
The SuperWASP project is an ultra-wide angle search for extra solar planetary transits. However, it can also serendipitously detect solar system objects, such as asteroids and comets. Each SuperWASP instrument consists of up to eight cameras, combined with high-quality peltier-cooled CCDs, which photometrically survey large numbers of stars in the magnitude range 7 15. Each camera covers a 7.8 × 7.8 degree field of view. Located on La Palma, the SuperWASP-I instrument has been observing the Northern Hemisphere with five cameras since its inauguration in April 2004. The ultra-wide angle field of view gives SuperWASP the possibility of discovering new fast moving (near to Earth) asteroids that could have been missed by other instruments. However, it provides an excellent opportunity to produce a magnitude-limited lightcurve survey of known main belt asteroids. As slow moving asteroids stay within a single SuperWASP field for several weeks, and may be seen in many fields, a survey of all objects brighter than magnitude 15 is possible. This will provide a significant increase in the total number of lightcurves available for statistical studies without the inherent bias against longer periods present in the current data sets. We present the methodology used in the automated collection of asteroid data from SuperWASP and some of the first examples of lightcurves from numbered asteroids.
Resumo:
We present photometry on 23 Jupiter Family Comets (JFCs) observed at large heliocentric distance, primarily using the 2.5-m Isaac Newton Telescope (INT). Snapshot images were taken of 17 comets, of which five were not detected, three were active and nine were unresolved and apparently inactive. These include 103P/Hartley 2, the target of the NASA Deep Impact extended mission, EPOXI. For six comets we obtained time-series photometry and use this to constrain the shape and rotation period of these nuclei. The data are not of sufficient quantity or quality to measure precise rotation periods, but the time-series do allow us to measure accurate effective radii and surface colours. Of the comets observed over an extended period, 40P/Väisälä 1, 47P/Ashbrook-Jackson and P/2004 H2 (Larsen) showed faint activity which limited the study of the nucleus. Light curves for 94P/Russell 4 and 121P/Shoemaker-Holt 2 reveal rotation periods of around 33 and 10h, respectively, although in both cases these are not unique solutions. 94P was observed to have a large range in magnitudes implying that it is one of the most elongated nuclei known, with an axial ratio a/b >= 3. 36P/Whipple was observed at five different epochs, with the INT and ESO's 3.6-m NTT, primarily in an attempt to confirm the preliminary short rotation period apparent in the first data set. The combined data set shows that the rotation period is actually longer than 24h. A measurement of the phase function of 36P's nucleus gives a relatively steep ß = 0.060 +/- 0.019. Finally, we discuss the distribution of surface colours observed in JFC nuclei, and show that it is possible to trace the evolution of colours from the Kuiper Belt Object (KBO) population to the JFC population by applying a `dereddening' function to the KBO colour distribution.
Resumo:
It is clear that ELTs will be able to detect extremely weak outgassing from Solar system bodies via a number of different methods. Occultations will allow probing for outgassing around 20 km main-belt asteroids. Imaging can reveal dust emission rates of only milligrams/second in the inner solar system, while sublimation rates of gasses should be measurable down to gram/second levels. Suitable targets will be identified via the coming all-sky surveys, through both the classical dynamical Tisserand Invariant and long-baseline lightcurves. It is possible that using these methods, ELTs may allow the discovery of much more activity throughout the Solar system than is presently known.
Resumo:
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
Resumo:
The integrated stratigraphic, radiocarbon and palynological record from an end-moraine system of the Oglio valley glacier (Italian Alps), propagating a lobe upstream in a lateral reach, provided evidence for a complete cycle of glacial advance, culmination and withdrawal during the Last Glacial Maximum and early Lateglacial. The glacier culminated in the end moraine shortly after 25.8 +/- 0.8 ka cal BP, and cleared the valley floor 18.3-17.2 +/- 0.3 ka cal BP. A primary paraglacial phase is then recorded by fast progradation of the valley floor.
As early as 16.7 +/- 0.3 ka cal BP, early stabilization of alluvial fans and lake filling promoted expansion of cembran pine. This is an unprecedented evidence of direct tree response to depletion of paraglacial activity during the early Lateglacial, and also documents the cembran pine survival in the mountain belt of the Italian Alps during the last glaciation. Between 16.1 and 14.6 +/- 0.5 ka cal BP, debris cones emplacement points to a moisture increase favouring tree Betula and Pinus sylvestris-mugo. A climate perturbation renewed paraglacial activity. According to cosmogenic ages on glacial deposits and AMS radiocarbon ages from lake records in South-Eastern Alps such phase compares favourably with the Gschnitz stadial and with the oscillations recorded at lakes Ragogna. Langsee and Jeserzersee, most probably forced by the latest freshening phases of the Heinrich Event 1.
A further sharp pine rise marks the subsequent onset of Bolling interstadial. The chronology of the Oglio glacier compares closely with major piedmont glaciers on the Central and Eastern Alpine forelands. On the other hand, the results of the present study imply a chronostratigraphic re-assessment of the recent geological mapping of the Central Italian Alps. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Biotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e. g. predators); thus, it is often assumed that species' distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e. g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.