155 resultados para ATOMIC ORBITALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion: electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H-3(+) and water at their dissociation limits; laser- heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the semiclassical description of two-state atomic collisions to low energies for which the impact parameter treatment fails. The problem reduces to solving a system of first-order differential equations with coefficients whose semiclassical asymptotes experience the Stokes phenomenon in the complex coordinate plane. Primitive semiclassical and uniform Airy approximations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the ionization of atomic hydrogen by electron impact from 0.3 eV to a few eV above the ionization threshold has been carried out using a semiclassical-quantal calculation. Differential and integrated cross sections are presented at 0.3 eV above the energy threshold. Triple- differential cross sections (TDCS) are presented at constant theta(12) geometry where theta(12)=180degrees and 150degrees. Good agreement is achieved with the measurement [Roder, Phys. Rev. Lett. 79, 1666 (1997)] and calculations based on exterior complex scaling at 2 eV and 4 eV above threshold. Results of triple-differential cross sections are also presented at 0.3, 0.5, and 1.0 eV above threshold at both theta(12)=180degrees and 150degrees. At theta(12)=180degrees the small local maximum in the TDCS around theta(1)=90degrees reported by Pan and Starace [Phys. Rev. A 45, 4588 (1992)] at 0.5 eV above threshold is not observed in our calculation at energies down to 0.3 eV above threshold. The shape of our double differential cross sections seems to disagree qualitatively with the available calculations as we found two local maxima around 15degrees and 165degrees in our calculation. Single differential cross sections in our formulation appear naturally as a function of total excess energy E and, therefore, constant for all combinations of individual electron energies E-1 and E- 2 with E=E-1+E-2. Total ionization cross sections are also compared with measurement and available theoretical calculations and found to be in reasonably good agreement up to 10 eV above ionization threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R-matrix calculated photoelectron angular distribution asymmetry parameters, beta for Cl+ 3s3p(5) P-3(o) and 3s(2)3p(3) (D-2(o))3d P-1(o) final ionic states in photoionization of the ground state of atomic Cl are presented in the photon energy range from threshold to 80 eV. The results, characterized by prominent autoionization structures which are sensitive to multielectron correlations, are compared with those recently measured by Whitfield et al (Whitfield S B, Kehoe K, Krause M 0 and Caldwell C D 2000 Phys. Rev. Lett. 84 4818). Contrary to experiment and previous theoretical calculations, our detailed CIV3 structure calculation (Deb N C, Crothers D S F, Felfli Z and Msezane A Z 2002 J. Phys. B: At. Mol. Opt. Phys. submitted) has identified the lowest P-1(o) level of Cl+ as 3S(2)3p(3)(D-2(o))3d P-1(o) rather than 3s3p(5) P-1(o). The implications and consequences of the measured data for the 3s P-1(o) level are also discussed in the context of our calculated energies for Cl+ and beta for 3d P-1(o).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured conductance histograms of atomic point contacts made from the noble-transition-metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low-bias voltage (below 300 mV) resemble those of the noble metals, whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm (-2). Our results show that nonsequential ionization from an Ar+ target is strongly suppressed compared with that from the corresponding neutral target. We have also observed for the first time the strong field ionization of high lying target metastable levels in the Ar+ beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm(2) to 10 PW/cm(2) using effective intensity matching (EIM), which is coupled with intensity selective scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, the probability of ionization is discussed in terms of the Keldysh adiabaticity parameter gamma, and the influence of the precursor ionic states present in recollision ionization is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analysed the electronic wave functions from an ab initio simulation of the ionic liquid (room temperature molten salt) dimethyl imidazolium chloride ([dmim][Cl] or [C1mim][Cl]) using localized Wannier orbitals. This allows us to assign electron density to individual ions. The probability distributions of the ionic dipole moments for an isolated ion and for ions in solution are compared. The liquid environment is found to polarize the cation by about 0.7 D and to increase the amplitude of the fluctuations in the dipole moments of both cation and anion. The relative changes in nuclear and electronic contributions are shown. The implications for classical force fields are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.