27 resultados para ACCURATE
Resumo:
Age trajectories for personality traits are known to be similar across cultures. To address whether stereotypes of age groups reflect these age-related changes in personality, we asked participants in 26 countries (N = 3,323) to rate typical adolescents, adults, and old persons in their own country. Raters across nations tended to share similar beliefs about different age groups; adolescents were seen as impulsive, rebellious, undisciplined, preferring excitement and novelty, whereas old people were consistently considered lower on impulsivity, activity, antagonism, and Openness. These consensual age group stereotypes correlated strongly with published age differences on the five major dimensions of personality and most of 30 specific traits, using as criteria of accuracy both self-reports and observer ratings, different survey methodologies, and data from up to 50 nations. However, personal stereotypes were considerably less accurate, and consensual stereotypes tended to exaggerate differences across age groups.
Resumo:
Ovarian cancer is a leading cause of gynaecological cancer-related morbidity and mortality. There has been increasing interest in the potential utility of anti-human epidermal growth factor receptor 2 (anti-HER2) agents in the treatment of this disease, with the attendant need to identify suitable predictive biomarkers of response to treatment.
Resumo:
Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.
Resumo:
Scalability and efficiency of on-chip communication of emerging Multiprocessor System-on-Chip (MPSoC) are critical design considerations. Conventional bus based interconnection schemes no longer fit for MPSoC with a large number of cores. Networks-on-Chip (NoC) is widely accepted as the next generation interconnection scheme for large scale MPSoC. The increase of MPSoC complexity requires fast and accurate system-level modeling techniques for rapid modeling and veri-fication of emerging MPSoCs. However, the existing modeling methods are limited in delivering the essentials of timing accuracy and simulation speed. This paper proposes a novel system-level Networks-on-Chip (NoC) modeling method, which is based on SystemC and TLM2.0 and capable of delivering timing accuracy close to cycle accurate modeling techniques at a significantly lower simulation cost. Experimental results are presented to demonstrate the proposed method. ©2010 IEEE.
Resumo:
Two models that can predict the voltage-dependent scattering from liquid crystal (LC)-based reflectarray cells are presented. The validity of both numerical techniques is demonstrated using measured results in the frequency range 94-110 GHz. The most rigorous approach models, for each voltage, the inhomogeneous and anisotropic permittivity of the LC as a stratified media in the direction of the biasing field. This accounts for the different tilt angles of the LC molecules inside the cell calculated from the solution of the elastic problem. The other model is based on an effective homogeneous permittivity tensor that corresponds to the average tilt angle along the longitudinal direction for each biasing voltage. In this model, convergence problems associated with the longitudinal inhomogeneity are avoided, and the computation efficiency is improved. Both models provide a correspondence between the reflection coefficient (losses and phase-shift) of the LC-based reflectarray cell and the value of biasing voltage, which can be used to design beam scanning reflectarrays. The accuracy and the efficiency of both models are also analyzed and discussed.
Resumo:
Core biopsy is an increasingly used technique in the pre-operative diagnosis of breast carcinoma, as it provides useful prognostic information with respect to tumour type and grade. Neoadjuvant chemotherapy is being used in the treatment of large and locally advanced breast cancers but little is known regarding the correlation between tumour histology on pre-treatment core biopsy and that in residual tumour following primary chemotherapy and surgery. This study aimed to evaluate the accuracy of core biopsy in predicting these features in patients treated with primary chemotherapy. One hundred and thirty-three patients with carcinoma of the breast diagnosed on clinical, radiological and cytological examination underwent core biopsy, followed by primary chemotherapy (with cyclophosphamide, vincristine, doxorubicin and prednisolone) and surgery. The false-negative rate for pre-treatment core biopsy was 14%, with 91% agreement between the grade demonstrated on core biopsy and that in the residual tumour following completion of chemotherapy. Tumour type in the residual post-chemotherapy tumour was predicted by core biopsy in 84%. This study suggests that pre-treatment core biopsy histology accurately predicts residual tumour histology following primary chemotherapy and surgery in patients with breast cancer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
TAP pulse responses are normally analysed using moments, which are integrals of the full TAP pulse response. However, in some cases the entire pulse response may not be recorded due to technical reasons, thereby compromising any data analysis due to moments generated from incomplete pulse responses. The current work discloses the development of a function which mathematically expands the tail of a TAP pulse response, so that the TAP data analysis can be accurately conducted. This newly developed analysis method has been applied to the oxidative dehydrogenation of ethane over Co–Cr–Sn–WOx/α-Al2O3 and Co–Cr–Sn–WOx/α-Al2O3 catalysts as a case study.
Resumo:
There is interest in determining levels of Mycobacterium avium subsp. paratuberculosis (MAP) contamination in milk. The optimal sample preparation for raw cows' milk to ensure accurate enumeration of viable MAP by the peptide-mediated magnetic separation (PMS)-phage assay was determined. Results indicated that milk samples should be refrigerated at 4 C after collection and MAP testing should commence within 24 h, or samples can be frozen at 70 C for up to one month without loss of MAP viability. Use of Bronopol is not advised as MAP viability is affected. The vast majority (>95%) of MAP in raw milk sedimented to the pellet upon centrifugation at 2500 g for 15 min, so this milk fraction should be tested. De-clumping of MAP cells was most effectively achieved by ultrasonication of the resuspended milk pellet on ice in a sonicator bath at 37 kHz for 4 min in ‘Pulse’ mode.
Resumo:
We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M ⊙, progenitor radius R ∼ 3 × 1013 cm (∼430 R⊙), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M⊙. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M ⊙of the Type IIP events.
Resumo:
This paper investigates camera control for capturing bottle cap target images in the fault-detection system of an industrial production line. The main purpose is to identify the targeted bottle caps accurately in real time from the images. This is achieved by combining iterative learning control and Kalman filtering to reduce the effect of various disturbances introduced into the detection system. A mathematical model, together with a physical simulation platform is established based on the actual production requirements, and the convergence properties of the model are analyzed. It is shown that the proposed method enables accurate real-time control of the camera, and further, the gain range of the learning rule is also obtained. The numerical simulation and experimental results confirm that the proposed method can not only reduce the effect of repeatable disturbances but also non-repeatable ones.
Resumo:
BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio $^{2}\Sigma^+$ potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction (MRCI+Q)is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron Effective Core-Potential (ECP) and even-tempered augmented polarized core-valence basis sets (aug-pCV$n$Z-PP, n= 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy De for the X$^2\Sigma^+$ state (extrapolated to the CBS limit) is 16895.12 cm$^{-1}$ (2.094 eV), which agrees within 0.1$\%$ of a revised experimental value of <16910.6 cm$^{-1}$, while the calculated re is within 0.03 pm of the experimental result.
Resumo:
There is little consensus regarding how verticality (social power, dominance, and status) is related to accurate interpersonal perception. The relation could be either positive or negative, and there could be many causal processes at play. The present article discusses the theoretical possibilities and presents a meta-analysis of this question. In studies using a standard test of interpersonal accuracy, higher socioeconomic status (SES) predicted higher accuracy defined as accurate inference about the meanings of cues; also, higher experimentally manipulated vertical position predicted higher accuracy defined as accurate recall of others’ words. In addition, although personality dominance did not predict accurate inference overall, the type of personality dominance did, such that empathic/responsible dominance had a positive relation and egoistic/aggressive dominance had a negative relation to accuracy. In studies involving live interaction, higher experimentally manipulated vertical position produced lower accuracy defined as accurate inference about cues; however, methodological problems place this result in doubt.