31 resultados para 900 MHz


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have established, through time correlated plasma emission and electrode and plasma potential measurements, that the near electrode emission observed in asymmetric capacitively coupled 13.56 MHz-driven hydrogen plasmas is caused by field reversal that leads to sheath collapse. Near-electrode emission has now been observed in Ar and He. The field reversal appears to be due to collision-induced electron drag. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-profile wearable antenna suitable for integration into low-cost, disposable medical vital signs monitors is presented. Simulated and measured antenna performance was characterized on a layered human tissue phantom, representative of the thorax region of a range of human bodies. The wearable antenna has sufficient bandwidth for the 868 MHz Industrial, Scientific and Medical frequency band. Wearable radiation efficiency of up to 30 % is reported when mounted in close proximity to the novel human tissue phantom antenna test-bed at 868 MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biosensors attached to the body for health monitoring is now readily accepted, and the merits of such systems and their potential impact on healthcare receive much attention. Wearable medical systems used in clinical applications to monitor vital signs must be comfortable to wear, yet have robust performance to ensure reliable communications links. Additionally, and vital to the success of these innovations, is that these solutions are disposable to avoid risk of patient infection and this means that they must be ultra-low cost. Antennas optimized for printing using conductive inks offer new exciting advances in making a truly disposable solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active radio-frequency identification systems that are used for the localisation and tracking of people will be subject to the same body centric processes that impact other forms of wearable communications. To achieve the goal of creating body worn tags with multiyear life spans, it will be necessary to gain an understanding of the channel conditions which are likely to impact the reader-tag interrogation process. In this paper we present the preliminary results of an indoor channel measurement campaign conducted at 868 MHz aimed at understanding and modelling signal characteristics for a wrist-worn tag. Using a model selection process based on the Akaike Information Criterion, the lognormal distribution was selected most often to describe the received signal amplitude. Parameter estimates are provided so that the channels investigated in this study may be readily simulated.