33 resultados para µ-Leucine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energetic profile of an ion translated along the axis of an ion channel should reveal whether the structure corresponds to a functionally open or closed state of the channel. In this study, we explore the combined use of Poisson–Boltzmann electrostatic calculations and evaluation of van der Waals interactions between ion and pore to provide an initial appraisal of the gating state of a channel. This approach is exemplified by its application to the bacterial inward rectifier potassium channel KirBac3.1, where it reveals the closed gate to be formed by a ring of leucine (L124) side chains. We have extended this analysis to a comparative survey of gating profiles, including model hydrophobic nanopores, the nicotinic acetylcholine receptor, and a number of potassium channel structures and models. This enables us to identify three gating regimes, and to show the limitation of this computationally inexpensive method. For a (closed) gate radius of 0.4 nm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the active sulphoxide metabolite of the anthelmintic triclabendazole (TCBZ-SX, 15-50 mu g ml(-1)) on the incorporation of radioactively labelled [C-14] leucine by adult Fasciola hepatica tissue slices was measured by liquid scintillation counting. In addition, the ability of the microfilament-disrupting drug, cytochalasin B, and the microtubule-disrupting drug, tubulozole-C, to inhibit protein synthesis, was assessed by similar methods and compared with TCBZ-SX. The established protein synthesis inhibitors, cycloheximide and actinomycin D were used as positive controls. All the drugs showed a significant inhibition of protein synthesis, albeit to different extents; however, TCBZ-SX was the most potent, with no significant difference between its effect and that of cycloheximide or actinomycin D. Moreover, the concentration of TCBZ-SX, above 15 mu g ml(-1), had little further influence on incorporation of [C-14] leucine. This investigation demonstrates the inhibitory effect of TCBZ-SX, cytochalasin B and tubulozole-C on protein synthesis in F. hepatica and confirms the qualitative observations made in several previous ultrastructural studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathepsins are known to have many important physiological roles and provide a viable target for inhibition. Fluorobenzoyl dipeptide derivatives were synthesized and tested for biological activity in an effort to find an efficient inhibitor of the cysteine protease cathepsin L. Thirty-six novel inhibitors (1-36) were synthesized from protected amino acids via the standard DCC/HOBt coupling protocol, containing a benzyl ester or a nitrile as an electrophilic warhead. The activity of the inhibitors was evaluated against cathepsin L and IC50 values calculated. Modification of both amino acids and terminal groups afforded compounds with single digit micromolar inhibition. Results utilizing the benzoyl-L-leucine-glycine nitrile backbone are comparable to that for the commercially available inhibitor 39.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the deacetylated (amine) metabolite of diamphenethide (DAMD, 10 mug ml-1) on the uptake and incorporation by adult Fasciola hepatica of radioactively labelled precursors of DNA, RNA and protein synthesis ([H-3]thymidine, [H-3]uridine and [H-3]leucine, respectively) was measured by liquid scintillation counting. Comparison was made between the effects of DAMD and those of specific inhibitors of DNA, RNA and protein synthesis, namely, 5-fluorouracil, cordycepin and cycloheximide, respectively. DAMD caused a significant decrease in the overall uptake and incorporation of [H-3]uridine by F. hepatica, decreased the incorporation of [H-3]leucine and also caused a significant decrease in the overall protein content of the flukes. The effect of DAMD was similar to that of cycloheximide (I x 10(-3) M), a potent inhibitor of protein synthesis, which also caused a significant decrease in the incorporation of [H-3]leucine by the fluke and a decrease in the overall protein content of the fluke. Cordycepin(100 mug ml-1) caused a significant decrease in the protein content of the fluke, but had no effect on the uptake or incorporation of [H-3]uridine. 5-Fluorouracil (I x 10(-4) m) did not affect the uptake or incorporation of VH]thymidine, nor did it decrease the protein content of the fluke. The results indicate that DAMD inhibits protein synthesis by F. hepatica, possibly by inhibiting RNA synthesis. The results are also consistent with previous morphological investigations involving DAMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.

Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.

Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.

Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.

Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paraoxonase (PON1) gene variants have been identified as risk factors for cardiovascular disease (CVD). There are two common PON1 polymorphisms at position 55 (Leu-Met change) and 192 (Gln-Arg change) of the amino acid chain. Leucine at position 55 and arginine at position 192 have been associated with increased cardiovascular risk. The increased prevalence of CVD in renal transplant recipients can be only partly explained by the increased prevalence of conventional risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leucine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these data demonstrate, for the first time, clear biochemical differences between the variants which help explain previous biomedical and epidemiological findings. © 2014 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive and rapid method was developed for angiotensin-converting enzyme (ACE) activity determination by capillary zone electrophoresis. Hippuryl-View the MathML source-histidyl-View the MathML source-leucine, a synthetic tripeptide, was used as the ACE-specific substrate. Capillary zone electrophoresis was employed to separate the products of the enzymatic reaction and the ACE activity was determined by quantification of hippuric acid, a result of the enzymatic reaction on the tripeptide. The capillary electrophoresis was performed in a 27 cm × 75 μm i.d. fused-silica capillary using 200 mM boric acid–borate buffer (pH 9.0) as a run buffer with an applied voltage of 8.1 kV at a capillary temperature of 23°C. The electrophoresis was monitored at 228 nm. Each electrophoretic run requires only a nanoliter of the enzymatic reactant solution, at only 6 min, rendering a powerful tool for the ACE assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic amphipathic α-helical peptides are intensively studied classes of host defence peptides (HDPs). Three peptides, peptide glycine-leucine-amide (PGLa-AM1), caerulein-precursor fragment (CPF-AM1) and magainin-AM1, originally isolated from norepinephrine-stimulated skin secretions of the African volcano frog Xenopus amieti (Pipidae), were studied for their antimicrobial and immunomodulatory activities against oral and respiratory pathogens. Minimal effective concentrations (MECs), determined by radial diffusion assay, were generally lower than minimal inhibitory concentrations (MICs) determined by microbroth dilution. PGLa-AM1 and CPF-AM1 were particularly active against Streptococcus mutans and all three peptides were effective against Fusobacterium nucleatum, whereas Enterococcus faecalis and Candida albicans proved to be relatively resistant micro-organisms. A type strain of Pseudomonas aeruginosa was shown to be more susceptible than the clinical isolate studied. PGLa-AM1 displayed the greatest propensity to bind lipopolysaccharide (LPS) from Escherichia coli, P. aeruginosa and Porphyromonas gingivalis. All three peptides showed less binding to P. gingivalis LPS than to LPS from the other species studied. Oral fibroblast viability was unaffected by 50. μM peptide treatments. Production of the pro-inflammatory cytokine IL-8 by oral fibroblasts was significantly increased following treatment with 1 or 10. μM magainin-AM1 but not following treatment with PGLa-AM1 or CPF-AM1. In conclusion, as well as possessing potent antimicrobial actions, the X. amieti peptides bound to LPS from three human pathogens and had no effect on oral fibroblast viability. CPF-AM1 and PGLa-AM1 show promise as templates for the design of novel analogues for the treatment of oral and dental diseases associated with bacteria or fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ataxia telangiectasia (AT) is a recessive syndrome, including cerebellar degeneration, immunologic defects and cancer predisposition, attributed to mutations in the recently isolated ATM (ataxia telangiectasia, mutated) gene. AT is diagnosed in 1/40,000 to 1/100,000 live births, with carriers calculated to comprise approximately 1% of the population. Studies of AT families have suggested that female relatives presumed to be carriers have a 5 to 8-fold increased risk for developing breast cancer, raising the possibility that germline ATM mutations may account for approximately 5% of all breast cancer cases. The increased risk for breast cancer reported for AT family members has been most evident among younger women, leading to an age-specific relative risk model predicting that 8% of breast cancer in women under age 40 arises in AT carriers, compared with 2% of cases between 40-59 years. To test this hypothesis, we undertook a germ-line mutational analysis of the ATM gene in a population of women with early onset of breast cancer, using a protein truncation (PTT) assay to detect chain-terminating mutations, which account for 90% of mutations identified in children with AT. We detected a heterozygous ATM mutation in 2/202 (1%) controls, consistent with the frequency of AT carriers predicted from epidemiologic studies. ATM mutations were present in only 2/401 (0.5%) women with early onset of breast cancer (P = 0.6). We conclude that heterozygous ATM mutations do not confer genetic predisposition to early onset of breast cancer.