285 resultados para Diabetes glucose metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function.

OBJECTIVE: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal.

METHODS: Adults with T2D [n = 18; age (means ± SEs): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men) were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food-style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10-12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment.

RESULTS: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h.

CONCLUSION: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Minority communities are disproportionately affected by diabetes, and minority women are at an increased risk for glucose intolerance (dysglycemia) during pregnancy.

OBJECTIVES: In pregnant American Indian women, the objectives of the study were to use current criteria to estimate the prevalence of first-trimester (Tr1) dysglycemia and second-trimester (Tr2) incidence of gestational diabetes mellitus (GDM) and to explore new candidate measures and identify associated clinical factors.

DESIGN: This was a prospective cohort study. In Tr1 we performed a 75-g, 2-hour oral glucose tolerance test (OGTT) and glycated hemoglobin (HbA1c) to determine the following: fasting insulin; homeostasis model assessment of insulin resistance; serum 1,5-anhydroglucitol; noninvasive skin autofluorescence (SCOUT). We defined dysglycemia by American Diabetes Association and Endocrine Society criteria and as HbA1c of 5.7% or greater. In Tr2 in an available subset, we performed a repeat OGTT and SCOUT.

PARTICIPANTS: Pregnant American Indian women (n = 244 at Tr1; n = 114 at Tr2) participated in the study.

OUTCOMES: The prevalence of dysglycemia at Tr1 and incidence of GDM at Tr2 were measured.

RESULTS: At Tr1, one woman had overt diabetes; 36 (15%) had impaired glucose tolerance (American Diabetes Association criteria and/or abnormal HbA1c) and 59 (24%) had GDM-Tr1 (Endocrine Society criteria). Overall, 74 (30%) had some form of dysglycemia. Associated factors were body mass index, hypertension, waist/hip circumferences, SCOUT score, fasting insulin, and homeostasis model assessment of insulin resistance. At Tr2, 114 of the Tr1 cohort underwent a repeat OGTT and SCOUT, and 26 (23%) had GDM. GDM-Tr2 was associated with increased SCOUT scores (P = .029) and Tr1 body mass index, waist/hip circumferences, diastolic blood pressure, fasting insulin, and triglyceride levels. Overall, dysglycemia at Tr1 and/or Tr2 affected 38% of the women.

CONCLUSIONS: Dysglycemia at some point during pregnancy was common among American Indian women. It was associated with features of insulin resistance and may confer long-term health risks for mother and child.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether exposure to diabetes in utero affects resting energy expenditure (REE) and fuel oxidation in infants.

STUDY DESIGN: At 35 ± 5 days after birth, body composition and REE were measured in full-term offspring of Native American and Hispanic women with either well-controlled diabetes (13 girls, 11 boys) or normal healthy pregnancies (18 girls, 17 boys).

RESULTS: Control of dysglycemia during gestation in the women with diabetes mellitus met current clinical standards, shown by average glycated hemoglobin (5.9 ± 0.2%; 40.6 ± 2.3 mmol/mol). Infant body mass (offspring of women with diabetes: 4.78 ± 0.13, control offspring: 4.56 ± 0.08 kg) and body fatness (offspring of women with diabetes: 25.2 ± 0.6, control offspring: 24.2 ± 0.5 %) did not differ between groups. REE, adjusted for lean body mass, was 14% lower in offspring of women with diabetes (41.7 ± 2.3 kJ/h) than control offspring (48.6 ± 2.0, P = .025). Fat oxidation was 26% lower in offspring of women with diabetes (0.54 ± 0.05 g/h) than control offspring (0.76 ± 0.04, P < .01) but carbohydrate oxidation did not differ. Thus, fat oxidation accounted for a lower fraction of REE in the offspring of women with diabetes (49 ± 4%) than control offspring (60 ± 3%, P = .022). Mothers with diabetes were older and had higher prepregnancy body mass index than control mothers.

CONCLUSIONS: Well-controlled maternal diabetes did not significantly affect body mass or composition of offspring at 1-month old. However, infants with mothers with diabetes had reduced REE and fat oxidation, which could contribute to adiposity and future disease risk. Further studies are needed to assess the impact differences in age and higher prepregnancy body mass index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Offspring of women with diabetes mellitus (DM) during pregnancy have a risk of developing metabolic disease in adulthood greater than that conferred by genetics alone. The mechanisms responsible are unknown, but likely involve fetal exposure to the in utero milieu, including glucose and circulating adipokines. The purpose of this study was to assess the impact of maternal DM on fetal adipokines and anthropometry in infants of Hispanic and Native American women.

METHODS: We conducted a prospective study of offspring of mothers with normoglycemia (Con-O; n = 79) or type 2 or gestational DM (DM-O; n = 45) pregnancies. Infant anthropometrics were measured at birth and 1-month of age. Cord leptin, high-molecular-weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF) and C-peptide were measured by ELISA. Differences between groups were assessed using the Generalized Linear Model framework. Correlations were calculated as standardized regression coefficients and adjusted for significant covariates.

RESULTS: DM-O were heavier at birth than Con-O (3.7 ± 0.6 vs. 3.4 ± 0.4 kg, p = 0.024), but sum of skinfolds (SSF) were not different. At 1-month, there was no difference in weight, SSF or % body fat or postnatal growth between groups. Leptin was higher in DM-O (20.1 ± 14.9 vs. 9.5 ± 9.9 ng/ml in Con-O, p < 0.0001). Leptin was positively associated with birth weight (p = 0.0007) and SSF (p = 0.002) in Con-O and with maternal hemoglobin A1c in both groups (Con-O, p = 0.023; DM-O, p = 0.006). PEDF was positively associated with birth weight in all infants (p = 0.004). Leptin was positively associated with PEDF in both groups, with a stronger correlation in DM-O (p = 0.009). At 1-month, HMWA was positively associated with body weight (p = 0.004), SSF (p = 0.025) and % body fat (p = 0.004) across the cohort.

CONCLUSIONS: Maternal DM results in fetal hyperleptinemia independent of adiposity. HMWA appears to influence postnatal growth. Thus, in utero exposure to DM imparts hormonal differences on infants even without aberrant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HDL has long been known for its role in reverse cholesterol transport, thought in part to explain the well-recognized links between low levels of HDL-C and cardiovascular disease. The past decade has seen increasing evidence from epidemiological, basic science and early human intervention studies that HDL biology is more complex and may influence the onset and progression of type 2 diabetes. Research has identified multiple potential pathways by which higher HDL particle concentrations or functional improvements may ameliorate the development and progression of the disease. These include promotion of insulin secretion and pancreatic islet beta-cell survival, promotion of peripheral glucose uptake, and suppression of inflammation. The relationships between HDL-C levels, commonly used in clinical practice, and HDL particle number, size and various HDL functions is complex, and is intimately linked with triglyceride metabolism. The complexity of these relationships is amplified in diabetes, which negatively impacts multiple aspects of lipoprotein biology. This article reviews the rationale for, and potential of, HDL-based anti-diabetic pharmacotherapy, with an emphasis on the particular challenges posed by diabetes-related HDL dysfunction, and on the difficulties of selecting appropriate targets and HDL-related biomarkers for research and for clinical practice. We discuss aspects of HDL metabolism that are known to be altered in type 2 diabetes, potentially useful measures of HDL-targeted therapy in diabetes, and review early intervention studies in humans. These areas provide a firm foundation for further research and knowledge expansion in this intriguing area of human health and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People in developing countries have faced multigenerational undernutrition and are currently undergoing major lifestyle changes, contributing to an epidemic of metabolic diseases, though the underlying mechanisms remain unclear. Using a Wistar rat model of undernutrition over 50 generations, we show that Undernourished rats exhibit low birth-weight, high visceral adiposity (DXA/MRI), and insulin resistance (hyperinsulinemic-euglycemic clamps), compared to age-/gender-matched control rats. Undernourished rats also have higher circulating insulin, homocysteine, endotoxin and leptin levels, lower adiponectin, vitamin B12 and folate levels, and an 8-fold increased susceptibility to Streptozotocin-induced diabetes compared to control rats. Importantly, these metabolic abnormalities are not reversed after two generations of unrestricted access to commercial chow (nutrient recuperation). Altered epigenetic signatures in insulin-2 gene promoter region of Undernourished rats are not reversed by nutrient recuperation, and may contribute to the persistent detrimental metabolic profiles in similar multigenerational undernourished human populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to its' established metabolic and cardioprotective effects, glucagon-like peptide-1 (GLP-1) reduces post-infarction heart failure via preferential actions on the extracellular matrix (ECM). Here, we investigated whether the GLP-1 mimetic, exendin-4, modulates cardiac remodelling in experimental diabetes by specifically targeting inflammatory/ECM pathways, which are characteristically dysregulated in this setting. Adult mice were subjected to streptozotocin (STZ) diabetes and infused with exendin-4/insulin/saline from 0 to 4 or 4-12 weeks. Exendin-4 and insulin improved metabolic parameters in diabetic mice after 12 weeks, but only exendin-4 reduced cardiac diastolic dysfunction and interstitial fibrosis in parallel with altered ECM gene expression. Whilst myocardial inflammation was not evident at 12 weeks, CD11b-F4/80(++) macrophage infiltration at 4 weeks was increased and reduced by exendin-4, together with an improved cytokine profile. Notably, media collected from high glucose-treated macrophages induced cardiac fibroblast differentiation, which was prevented by exendin-4, whilst several cytokines/chemokines were differentially expressed/secreted by exendin-4-treated macrophages, some of which were modulated in STZ exendin-4-treated hearts. Our findings suggest that exendin-4 preferentially protects against ECM remodelling and diastolic dysfunction in experimental diabetes via glucose-dependent modulation of paracrine communication between infiltrating macrophages and resident fibroblasts, thereby indicating that cell-specific targeting of GLP-1 signalling may be a viable therapeutic strategy in this setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.

METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).

RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.

CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The diagnosis of gestational diabetes (GDM) during pregnancy can lead to anxiety. Little research has focused on the education these women receive and how this is best delivered in a busy clinic. Aim This study evaluated the impact of an innovative patient-centred educational DVD on anxiety and glycaemic control and in newly diagnosed women with GDM. Method 150 multi-ethnic women, aged 19-44 years, from three UK hospitals were randomised to either standard care plus DVD (DVD group, n=77) or standard care alone (control group, n=73) at GDM diagnosis. Women were followed up at their next clinic visit at a mean ± SD of 2.5 ± 1.6 weeks later. Primary outcomes were anxiety (State-Trait Anxiety Inventory) and mean 1-hour postprandial capillary self-monitored blood glucose for all meals, on day prior to follow-up. Secondary outcomes included pregnancy specific stress (Pregnancy Distress Questionnaire), emotional adjustment to diabetes (Appraisal of Diabetes Scale), self-efficacy (Diabetes Empowerment Scale) and GDM knowledge (non-validated questionnaire). Other outcomes included mean fasting and 1-hour postprandial blood glucose at each meal, on day prior to follow-up. Women in the DVD group completed a feedback questionnaire on the resource. Results No significant difference between the DVD and control group were reported, for anxiety (37.7 ± 11.7 vs 36.2 ± 10.9; mean difference after adjustment for covariates (95%CI) 2.5 (-0.8, 5.9) or for mean 1-hour postprandial glucose (6.9 ± 0.9 vs 7.0 ± 1.2 mmol/L; -0.2 (-0.5, 0.2). Similarly, no significant differences in the other psychosocial variables were identified between the groups. However, the DVD group had significantly lower postprandial breakfast glucose compared to the control group (6.8 ± 1.2 vs 7.4 ± 1.9 mmol/L; -0.5 (-1.1, -<0.1; p=0.04). Using a scale of 0-10, 84% rated the DVD 7 or above for usefulness (10 being very useful), and 88% rated it 7 or above when asked if they would recommend to a friend (10 being very strongly recommend). Women described the DVD as ‘reassuring’, ‘a fantastic tool’, that ‘provided a lot of information in a quick and easy way’ and ‘helped reinforce all the information from clinic’. Discussion While no significant change was observed in anxiety or mean postprandial glucose, the DVD was rated highly by women with GDM and may be a useful resource to assist with educating newly diagnosed women. This project is supported by BRIDGES, an IDF programme supported by an educational grant from Lilly Diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.