280 resultados para muscle enzymes
Resumo:
The abductor hallucis flap is commonly used as a pedicled flap (distally or proximally based) in the management of ankle, heel, and mid-foot lesions, where it is ideally used for closing defects. This study investigates the anatomical details of this muscle regarding its various forms of insertion and its arterial supply in 15 cadaveric feet. Four types of insertion could be distinguished: type A, insertion at the proximal phalanx of the big toe (46.7%); type B, insertion by two slips into the base of the proximal phalanx and the sesamoid bone (33.3%); type C, insertion at the sesamoid bone (6.7%); And type D, the insertion is divided into superficial tendinous and deep fleshy parts which are attached to the base of the proximal phalanx and to the metatarsophalangeal joint capsule of the big toe, respectively (13.3%). As regards the arterial supply, three patterns were noticed: pattern A (40%) where the medial plantar artery (MPA) is divided into superficial and deep branches that supplied the muscle; pattern B (53.3%) where the MPA failed to produce a deep branch but instead continued as the superficial branch supplying the two ends of the muscle; and pattern C (6.6%) where the MPA continued as a deep branch supplying the muscle. A superficial branch of MPA provided a branch to the abductor hallucis muscle from its proximal part. In two specimens (13.3%), the lateral plantar artery shared in the supply of the most proximal part of the muscle. These results can be useful in determining the appropriate flap design based on the abductor hallucis type of insertion and the pattern of its arterial supply in the patients.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1–5 and 6–10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mmHg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease
Resumo:
Objectives: To develop an epirubicin-loaded, water-soluble mucoadhesive gels that have the correct rheological properties to facilitate their delivery into the bladder via a catheter, while allowing for their spread across the bladder wall with limited expansion of the bladder and increasing the retention of epirubicin in the bladder and flushing with urine.
Methods: Epirubicin-loaded hydroxyl ethyl cellulose (HEC) and hydroxy propyl methyl cellulose (HPMC) gels were manufactured and tested for their rheological properties. Their ability to be pushed through a catheter was also assessed as was their in-vitro drug release, spreading in a bladder and retention of epirubicin after flushing with simulated urine.
Key findings: Epirubicin drug release was viscosity-dependent. The 1 and 1.5% HEC gels and the 1, 1.5 and 2% HPMC gels had the correct viscosity to be administered through a model catheter and spread evenly across the bladder wall under the pressure of the detrusor muscle. The epirubicin-loaded gels had an increased retention time in the bladder when compared with a standard intravesical solution of epirubicin, even after successive flushes with simulated urine.
Conclusion: The increased retention of epirubicin in the bladder by the HEC and HPMC gels warrant further investigation, using an in-vivo model, to assess their potential for use as treatment for non-muscle-invasive bladder cancer.