294 resultados para Mayes, Eric
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Resumo:
Music for Sleeping & Waking Minds (2011-2012) is a new,overnight work in which four performers fall asleep while wearing custom designed EEG sensors which monitor their brainwave activity. The data gathered from the EEG sensors is applied in real time to different audio and image signal processing functions, resulting in continuously evolving multichannel sound environment and visual projection. This material serves as an audiovisual description of the individual and collective neuro physiological state of the ensemble. Audiences are invited to experience the work in different states of attention: while alert and asleep, resting and awakening.
Resumo:
The mapping problem is inherent to digital musical instruments (DMIs), which require, at the very least, an association between physical gestures and digital synthesis algorithms to transform human bodily performance into sound. This article considers the DMI mapping problem in the context of the creation and performance of a heterogeneous computer chamber music piece, a trio for violin, biosensors, and computer. Our discussion situates the DMI mapping problem within the broader set of interdependent musical interaction issues that surfaced during the composition and rehearsal of the trio. Through descriptions of the development of the piece, development of the hardware and software interfaces, lessons learned through rehearsal, and self-reporting by the participants, the rich musical possibilities and technical challenges of the integration of digital musical instruments into computer chamber music are demonstrated.
Resumo:
Bax's Fourth is the only one of his symphonies that alludes explicitly to an extramusical stimulus: 'a rough sea at flood-tide on a sunny day'. This essay contextualizes Bax's frequent use of sea imagery throughout his oeuvre, noting in particular the peripherality of the composer's observation of the sea from the liminal position of the shore. It then considers how the idea of the sea in the Fourth Symphony is related to several musical features (motivic coherence, thematic expansion, formal anomalies), and how the sea is central to the underlying conflict in the work between nature and humanity.
Resumo:
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean-atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010-2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between similar to 140 and 55 lea, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5
Resumo:
I will question modes of listening in network music performance environments, drawing on my experience as a performer listening in these scenarios. I will situate network listening, which I have previously examined as ‘haptic aurality’ (Schroeder, 2009, 2012, 2013) within the context of current music making, and will refer to changes in compositional practices that draw specific attention to listening. I will show that some of these compositional developments play a determining role in articulating a new discourse of listening. French composer Eric Satie’s concept of Furniture Music (in Duckworth, 2005), Pierre Schaeffer’s ideas on reduced listening (1966), Pauline Oliveros’ deep listening practices (2005) as well as digital music platforms all serve to show a development towards a proliferation in listening experiences. I expand this narrative to listening practices in network performance environments, and identify a specific bodily fragility in listening in and to the network. This fragile state of listening and de-centered kind of performative being allow me to draw parallels to the Japanese art form Butoh (Kasai, 1999, 2000; Kasai and Parsons, 2003) and Elaine Scarry’s metaphor of beauty (Scarry, 2001). My own performance experiences, set within the context of several critical texts, allow me to understand network[ed] listening as an ideal corporeal state, which offers a rethinking of linear conceptions of the other and a subject’s own relation with her world. Ultimately, network[ed] listening posits listening as a corporeal and multi-dimensional experience that is continuously being re-shaped by technological, socio-political and cultural concerns.
Resumo:
Rapid and sensitive detection of viral infections associated with Bovine Respiratory Disease (BRD) in live animals is recognized as key to minimizing the impact of this disease. ELISA-based testing is limited as it typically relies on the detection of a single viral antibody subtype within an individual test sample and testing is relatively slow and expensive. We have recently initiated a new project entitled AgriSense to develop a novel low-cost and label-free, integrated bimodal electronic biosensor system for BRD. The biosensor system will consist of an integrated multichannel thin-film-transistor biosensor and an electrochemical impedance spectroscopy biosensor, interfaced with PDMS-based microfluidic sample delivery channels. By using both sensors in tandem, nonspecific binding biomolecules must have the same mass to charge ratio as the target analyte to elicit equivalent responses from both sensors. The system will target simultaneous multiplexed sensing of the four primary viral agents involved in the development of BRD: bovine herpesvirus-1 (BHV-1), bovine parainfluenza virus-3 (BPIV-3), bovine respiratory syncytial virus (BRSV), and bovine viral diarrhea (BVD). Optimized experimental conditions derived through model antigen-antibody studies will be applied to the detection of serological markers of BRD-related infections based on IgG interaction with a panel of sensor-immobilized viral proteins. This rapid, “cowside” multiplex sensor capability presents a major step forward in disease diagnosis, helping to ensure the integrity of the agri-food supply chain by reducing the risk of disease spread during animal movement and transport.