333 resultados para DIABETIC COMPLICATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Suppressor of cytokine signalling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 critically controls STAT3 activation, cytokine signalling and inflammatory gene expression in macrophages and microglia. In this study, we investigated the role of SOCS3/STAT3 in myeloid cells in the initiation and progression of diabetic retinopathy (DR). 
Methods: Mice with a conditional deletion of SOCS3 in myeloid cells (LysMCre-SOCS3 fl/fl) and C57BL/6J (as control) were rendered diabetic by a low-dose multiple intraperitoneal injections of Stroptozocine. Diabetes related retinal changes, including leukostasis, acellular capilliaries, and microglial activation were assessed at different stages of disease. Bone marrow derived macrophages (BMDMs) from LysMCreSOCS3 fl/fl and C57BL/6J mice were cultured in high glucose (HG) medium, and cell activation was evaluated by real-time RT-PCR.
Results: In C57BL/6J diabetic mice the expression of phosphorylated STAT3 (pSTAT3) was increased and SOCS3 was decreased in the retina. Interleukin 6 (IL-6), the main cytokine that stimulates STAT3 activation, was increased in the plamsa in diabetic mice. Although blood glucose levels and Hbac-1 were comparable between LysMCre-SOCS3fl/fl and WT mice after STZ injection, the LysMCreSOCS3 fl/fl diabetic mice developed severe retinal vasculopathy, including increased leukostasis and microglial activation at one month and enhanced acellular capillary formation at 6 months after diabetes induction. 
Conclusions: our study suggests that the JAK/STAT3 pathway is involved in the initiation and progression of DR, and uncontrolled STAT3 activation results in accelerated DR progression. Targeting the STAT3 pathway may be a novel approach for the management of DR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is a major cause of visual impairment worldwide. The precise pathogenesis of this diabetic complication remains ill-defined and this is reflected in the limited options for preventing development and progression of this disease. The value of animal models to understand and treat human disease is well recognised and this chapter focuses on the range of in vivo model systems that are available for studying DR. These models have been developed over many decades and utilised to aid our understanding of what causes DR, about how microvascular and neural lesions develop and to provide evidence for key cellular and molecular mechanisms that drive this pathology. A wide range of animal models of DR are currently available, each with advantages and disadvantages that need to be understood and evaluated for their scientific and clinical value. As transgenic and imaging technology improves, more models will be developed and they will continue to play a critical role in the development of new therapeutic approaches to DR by providing robust, preclinical evidence prior to clinical trial.