277 resultados para Acute
Resumo:
Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.
Resumo:
In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.
Resumo:
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and codownregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Resumo:
Acute Kidney Injury(AKI) is common, costly to manage and associated with high mortality. AKI can occur either in the community or in hospitalised patients and may be challenging to recognise because it is typically asymptomatic.Opportunities for prevention of AKI are frequently missed and in the absence of symptoms or signs there is often a delay in recognition ofestablished AKI.Approximately two thirds of hospitalised patients admitted with AKI have developed AKI in the community. AKI in hospitalised patients is associated with a substantial mortality rate > 20%. AKI is a potentially reversible process so improvements in recognition and early interventions could have a major impact on patient outcomes.
Resumo:
Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.
Resumo:
In this single centre study of childhood acute lymphoblastic leukaemia (ALL) patients treated on the Medical Research Council UKALL 97/99 protocols, it was determined that minimal residual disease (MRD) detected by real time quantitative polymerase chain reaction (RQ-PCR) and 3-colour flow cytometry (FC) displayed high levels of qualitative concordance when evaluated at multiple time-points during treatment (93.38%), and a combined use of both approaches allowed a multi time-point evaluation of MRD kinetics for 90% (53/59) of the initial cohort. At diagnosis, MRD markers with sensitivity of at least 0.01% were identified by RQ-PCR detection of fusion gene transcripts, IGH/TRG rearrangements, and FC. Using a combined RQ-PCR and FC approach, the evaluation of 367 follow-up BM samples revealed that the detection of MRD >1% at Day 15 (P = 0.04), >0.01% at the end of induction (P = 0.02), >0.01% at the end of consolidation (P = 0.01), >0.01% prior to the first delayed intensification (P = 0.01), and >0.1% prior to the second delayed intensification and continued maintenance (P = 0.001) were all associated with relapse and, based on early time-points (end of induction and consolidation) a significant log-rank trend (P = 0.0091) was noted between survival curves for patients stratified into high, intermediate and low-risk MRD groups.
Resumo:
Between August 1989 and November 2003, 33 patients at our center with acquired aplastic anemia underwent bone marrow transplantation (BMT) from HLA-identical sibling donors with cyclophosphamide and in vivo anti-CD52 monoclonal antibodies (MoAb) for conditioning. The median age at BMT was 17 years (range, 4-46 years). Before BMT, 58% were heavily transfused (>50 transfusions), and 42% had previously experienced treatment failure with antithymocyte globulin-based immunosuppressive therapy. Unmanipulated bone marrow was used as the source of stem cells in all patients except 1. Graft-versus-host disease (GVHD) prophylaxis was with cyclosporine alone in 19 (58%) patients; 14 received anti-CD52 MoAb in addition to cyclosporine. The conditioning regimen was well tolerated without significant acute toxicity. Graft failure was seen in 8 patients (primary, n = 4; secondary, n = 4). Of those whose grafts failed, 4 survived long-term (complete autologous recovery, n = 2; rescue with previously stored marrow, n = 1; second allograft, n = 1). The cumulative incidence of graft failure and grade II to IV acute and chronic GVHD was 24%, 14%, and 4%, respectively. None developed extensive chronic GVHD. With a median follow-up of 59 months, the 5-year survival was 81% (95% confidence interval, 68%-96%). No unexpected early or late infectious or noninfectious complications were observed. We conclude that the conditioning regimen containing cyclophosphamide and anti-CD52 MoAb is well tolerated and effective for acquired aplastic anemia with HLA-matched sibling donors. The favorable effect on the incidence and severity of GVHD is noteworthy in this study and warrants further investigation.
Resumo:
Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.
Resumo:
A 41-year-old woman received a syngeneic BMT for CLL and subsequently developed acute skin GVHD. Transfusion-related allogeneic GVHD was excluded on the basis of an unchanged HLA type in circulating lymphocytes. Short tandem repeat PCR was used to confirm syngeneicity between donor and recipient. The patient had a personal and family history of autoimmune disease which may have made her particularly susceptible to development of syngeneic GVHD. The distinction between allogeneic and syngeneic or autologous GVHD is important because of therapeutic implications.
Resumo:
Hematopoietic chimerism was analyzed in serial bone marrow samples taken from 28 children following T-cell depleted unrelated donor bone marrow transplants (UD BMT) for acute lymphoblastic leukemia (ALL). Chimeric status was determined by polymerase chain reaction (PCR) of simple tandem repeat (STR) sequences (maximal sensitivity, 0.1%). At least two serial samples were examined in 23 patients. Of these, two had evidence of complete donor engraftment at all times and eight showed stable low level mixed chimerism (MC) (<1% recipient hematopoiesis). All 10 of these patients remain in remission with a minimum follow-up of 24 months. By contrast, 13 patients demonstrated a progressive return of recipient hematopoiesis. Five of these relapsed (4 to 9 months post BMT), one died of cytomegalovirus pneumonitis and seven remain in remission with a minimum follow-up of 24 months. Five children were excluded from serial analysis as two serial samples were not collected before either relapse (3) or graft rejection (2). We conclude that as with sibling transplants, ex vivo T depleted UD BMT in children with ALL is associated with a high incidence of MC. Stable donor engraftment and low level MC always correlated with continued remission. However, detection of a progressive return of recipient cells did not universally correlate with relapse, but highlighted those patients at greatest risk. Serial chimerism analysis by PCR of STRs provides a rapid and simple screening technique for the detection of relapse and the identification of patients with progressive MC who might benefit from detailed molecular analysis for minimal residual disease following matched volunteer UD BMT for childhood ALL.