308 resultados para femtosecond optical heterodyne detection of optical Kerr
Resumo:
BACKGROUND: To compare the ability of Glaucoma Progression Analysis (GPA) and Threshold Noiseless Trend (TNT) programs to detect visual-field deterioration.
METHODS: Patients with open-angle glaucoma followed for a minimum of 2 years and a minimum of seven reliable visual fields were included. Progression was assessed subjectively by four masked glaucoma experts, and compared with GPA and TNT results. Each case was judged to be stable, deteriorated or suspicious of deterioration
RESULTS: A total of 56 eyes of 42 patients were followed with a mean of 7.8 (SD 1.0) tests over an average of 5.5 (1.04) years. Interobserver agreement to detect progression was good (mean kappa = 0.57). Progression was detected in 10-19 eyes by the experts, in six by GPA and in 24 by TNT. Using the consensus expert opinion as the gold standard (four clinicians detected progression), the GPA sensitivity and specificity were 75% and 83%, respectively, while the TNT sensitivity and specificity was 100% and 77%, respectively.
CONCLUSION: TNT showed greater concordance with the experts than GPA in the detection of visual-field deterioration. GPA showed a high specificity but lower sensitivity, mainly detecting cases of high focality and pronounced mean defect slopes.
Resumo:
PURPOSE: To evaluate the clinical agreement in the detection of optic disk changes in patients with glaucoma using simultaneous stereophotographs. DESIGN: Masked-observer variability study. METHODS: Ten glaucoma specialists examined pairs of simultaneous stereophotographs of glaucomatous and control optic disks to determine whether there were changes compatible with progression of glaucomatous damage. RESULTS: Intraobserver agreement had a kappa value ranging from 0.55 to 0.78. Interobserver agreement among the glaucoma specialists had a kappa value ranging from 0.34 to 0.68. CONCLUSION: Clinical examination of stereophotographs to detect optic disk changes in glaucoma patients has limitations associated with suboptimal reproducibility. © 2003 by Elsevier Inc. All rights reserved.
Resumo:
Purpose: This study was designed to evaluate the clinical agreement in the detection of optic disc changes and the ability of computerized image analysis to detect glaucomatous deterioration of the optic disc. Methods: Pairs of stereophotographs of 35 glaucomatous optic discs taken 5 years apart and of 5 glaucomatous discs photographed twice on the same day. Two glaucoma specialists examined the pairs of stereophotographs (35 cases and 5 controls) in a masked manner and judged whether the optic disc showed changes in the optic disc compatible with progression of glaucomatous damage. The stereophotographs of the five optic discs photographed twice on the same day (which by definition did not change) and of five cases judged to have deteriorated by both glaucoma specialists were analyzed by computerized image analysis with the Topcon ImageNet system. Intra- and inter-observer agreement in the detection of optic disc changes (evaluated using kappa statistic), and changes in the rim area to disc area ratio (evaluated using descriptive statistics and paired t-test). Results: Intra-observer agreement had a kappa value of 0.75 for observer 1 and 0.60 for the observer 2. Inter-observer agreement between the glaucoma specialists had a kappa value of 0.60. The image analyzer did not discriminate between controls and cases with clinically apparent glaucomatous change of the optic disc. Conclusion: Clinical agreement in detecting changes in the optic disc was moderate to substantial. Computerized image analysis with the Topcon ImageNet system appeared not to be useful in detecting glaucomatous changes of the optic disc.
Resumo:
Aims: The objective of this study was to develop a novel screening method for detection of viable Mycobacterium avium subsp. paratuberculosis (Map) in milk and faeces, as a rapid alternative to Map culture.
Methods and results: The new method couples Map-specific peptide-mediated magnetic separation technique with an optimised phage amplification assay followed by detection of released progeny phage by ELISA in a competition assay format using polyclonal antibody produced against the D29 mycobacteriophage involved in the phage assay. Sample matrices were found not to interfere with the developed method and the dynamic range of the assay was 3 X 102 – 6 X 108 phage ml-1. When low numbers of Map were present (102 CFU ml-1) the burst size of a single host Map cell was maximal (103 phage per cell) resulting in a highly sensitive screening assay.
Conclusion: A rapid, sensitive immuno-based screening method suitable for the detection of viable Map in milk and faeces was developed.
Significance and impact of study: The novel PMS-phage-ELISA permits sensitive, qualitative detection of viable Map in milk or faeces samples within 48 h, representing a substantial decrease in time to detection compared to current culture methods for Map.
Resumo:
A homogenous detection of pathogen (Giardia lamblia cysts) based on the catalytic growth of gold nanoparticles (AuNPs) has been studied. In this study, centrifugal filters were employed as tools to concentrate and separate the pathogen cells, and moreover amplify the detection signal. The catalytic growth of gold nanoparticles was verified to be positively related to gold seeds concentration. On this basis, homogenous detection of the pathogenic bacteria in liquid phase was established by means of conjugating antibody to gold seeds. Under the given experimental condition, detection limit of G. lamblia cysts was determined as low as 1.088 × 103 cells ml-1. The additional nonspecific binding tests were also conducted to verify the detection specificity. This sensing platform has been proved to be a sensitive, reliable and simple method for large-scale pathogen detection, and provide valuable insight for the development of gold nanocrystals based colorimetric biosensors.
Resumo:
A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C. parvum oocyst (primary antibody) and oocysts, followed by the binding step of the unbound primary antibody onto the secondary antibody surface. It enhanced not only the immunoreaction yield of the oocysts by batch reaction but also the accessibility of analytes to the chip surface by antibody–antibody interaction. Furthermore, the use of optimum concentration of the primary antibody maximized its binding response on the chip. An inversely linear calibration curve for the oocyst concentration versus SPR signal was obtained in the range of 1×106–1×102 oocysts ml-1. The oocyst detection was also successfully achieved in natural water systems. These results indicate that the SPR-based inhibition assay using the Cryptosporidium sensor chip has high application potential for the real-time analysis of C. parvum oocyst in laboratory and field water monitoring.
Resumo:
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.
Resumo:
In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection involves the sandwiching of the target AIV between magnetic immunoprobes and barcode-carrying immunoprobes. Because each barcode-carrying immunoprobe is functionalized with a multitude of fluorophore-DNA barcode strands, many DNA barcodes are released for each positive binding event resulting in amplification of the signal. Using an inactivated H16N3 AIV as a model, a linear response over five orders of magnitude was obtained, and the sensitivity of the detection was comparable to conventional RT-PCR. Moreover, the entire detection required less than 2 hr. The results indicate that the method has great potential as an alternative for surveillance of epidemic outbreaks caused by AIV, other viruses and microorganisms.
Resumo:
A sandwich immunoassay for PSA/ACT complex detection based on gold nanoparticle aggregation using two probes was developed. The functionalized colloidal gold nanoparticles (AuNPs) showed highly stable not only in the presence of high ionic strength but also in a wide pH range. The functionalized AuNPs were tagged with PSA/ACT complex monoclonal antibody and goat PSA polyclonal antibody and served as the probes to induce aggregation of the colloidal particles. As a result, PSA/ACT complex was detected at concentrations as low as 1 ng/ml. This is the first time that a new aggregation sandwich-immunoassay technique using two gold probes has been used, and the results are generally applicable to other LSPR-based immunoassays.
Resumo:
Prostate specific antigen-a1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
A mechanism of dual enlargement of gold nanoparticles (AuNPs) comprising two steps is described. In the first step, the AuNPs are enlarged by depositing Au atoms on their crystalline faces. In this process, the particles are not only enlarged but they are also observed to multiply: new Au nuclei are formed by the budding and division of the enlarged particles. In the second step, a silver enhancement is subsequently performed by the deposition of silver atoms on the enlarged and newly formed AuNPs to generate bimetallic Au@Ag core-shell structures. The dual nanocatalysis greatly enhances the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on-slide detection of the food-born pathogen Campylobacter jejuni is developed. After capturing the target bacteria, gold-tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner. In this paper, dual nanocatalysis is reported for the first time. It provides a valuable mechanistic insight into the development of a simple and cost-effective detection format.
Resumo:
Quantitative detection of specific viral DNA has become a pressing issue for the earlier clinical diagnosis of viral infectious diseases. Therefore, in this paper, we report a simple, sensitive, and inexpensive quantitative approach for DNA detection based on the autocatalytic Au deposition of gold nanoprobes via the surface reduction of AuCl4- to Au0 on their surface in the presence of ascorbic acid (AA) and cetyltrimethylammonium bromide (CTAB). On this basis, signal enhancements in the absorbance intensity and kinetic behavior of gold enlargement in the aqueous phase have been well investigated and explained for the selection of analytical parameters. To achieve high sensitivity, magnetic particles conjugated with capture probes (PMPs) were employed for the collection of gold nanoprobes. After denaturated by ion a pH 11 solution, the amplified signals of gold nanoprobes, which is proportional to the concentration of the target DNA, could easily be confirmed by a UV-vis scanning spectrophotometer. Limit of detection could be obtained as low as 1.0 fM by this simple method.
Resumo:
Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 µm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection to accurately confirm the presence of C. jejuni. Without pre-enrichment, this method was able to detect approximately 10 CFU of C. jejuni in 1 µl of spiked feces within 3 h.
Resumo:
In this paper, we report a coupling of fluorophore-DNA barcode and bead-based
immunoassay for the detection of Avian Influenza Virus (AIV), a potential pandemic threat for human health and enormous economic losses. The detection strategy is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representatively fluorescent barcodes. Despite its simplicity the assay has sensitivity comparable to RT-PCR amplification, and possesses a great potential as a rapid and sensitive on-chip detection format.