270 resultados para Ventral prostate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer treatment is dominated by strategies to control androgen receptor (AR) activity. AR has an impact on prostate cancer development through the regulation of not only transcription networks but also genomic stability and DNA repair, as manifest in the emergence of gene fusions. Whole-genome maps of AR binding sites and transcript profiling have shown changes in the recruitment and regulatory effect of AR on transcription as prostate cancer progresses. Defining other factors that are involved in this reprogramming of AR function gives various opportunities for cancer detection and therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new study shows that HOXB13 is preferentially recruited to the risk allele of a prostate cancer-associated SNP, enhancing the expression of RFX6, a driver of prostate cancer cell migration and predictor of disease progression. The work illustrates how a single risk locus contributes both to prostate cancer incidence and, through functional follow-up, to disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of pretreatment disseminated cells (pre-DTC) reflecting its homing to bone marrow (BM) in prostate cancer (PCa) might improve the current model to predict recurrence or survival in men with nonmetastatic disease despite of primary treatment. Thereby, pre-DTC may serve as an early prognostic biomarker. Post-treatment DTCs (post-DTC) finding may supply the clinician with additional predictive information about the possible course of PCa. To assess the prognostic impact of DTCs in BM aspirates sampled before initiation of primary therapy (pre-DTC) and at least 2 years after (post-DTC) to established prognostic factors and survival in patients with PCa. Available BM of 129 long-term follow-up patients with T1-3N0M0 PCa was assessed in addition to 100 BM of those in whom a pretreatment BM was sampled. Patients received either combined therapy [n = 81 (63%)], radiotherapy (RT) with different duration of hormone treatment (HT) or monotherapy with RT or HT alone [n = 48 (37%)] adapted to the criteria of the SPCG-7 trial. Mononuclear cells were deposited on slides according to the cytospin methodology and DTCs were identified by immunocytochemistry using the pancytokeratin antibodies AE1/AE3. The median age of men at diagnosis was 64.5 years (range 49.5-73.4 years). The median long-term follow-up from first BM sampling to last observation was 11 years. Categorized clinically relevant factors in PCa showed only pre-DTC status as the statistically independent parameter for survival in the multivariate analysis. Pre-DTCs homing to BM are significantly associated with clinically relevant outcome independent to the patient's treatment at diagnosis with nonmetastatic PCa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression.

OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected.

DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature.

RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for.

CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) regulates prostate cell growth in man, and prostate cancer is the commonest cancer in men in the UK. We present a comprehensive analysis of AR binding sites in human prostate cancer tissues, including castrate-resistant prostate cancer (CRPC). We identified thousands of AR binding sites in CRPC tissue, most of which were not identified in PC cell lines. Many adjacent genes showed AR regulation in xenografts but not in cultured LNCaPs, demonstrating an in-vivo-restricted set of AR-regulated genes. Functional studies support a model of altered signaling in vivo that directs AR binding. We identified a 16 gene signature that outperformed a larger in-vitro-derived signature in clinical data sets, showing the importance of persistent AR signaling in CRPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined.

OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual.

DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA).

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity.

RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data.

CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21(CIP1/WAF1). Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations in transcriptional programs are fundamental to the development of cancers. The androgen receptor is central to the normal development of the prostate gland and to the development of prostate cancer. To a large extent this is believed to be due to the control of gene expression through the interaction of the androgen receptor with chromatin and subsequently with coregulators and the transcriptional machinery. Unbiased genome-wide studies have recently uncovered the recruitment sites that are gene-distal and intragenic rather than associated with proximal promoter regions. Whilst expression profiles from AR-positive primary prostate tumours and cell lines can directly relate to the AR cistrome in prostate cancer cells, this distribution raises significant challenges in making direct mechanistic connections. Furthermore, extrapolating from datasets assembled in one model to other model systems or clinical samples poses challenges if we are to use the AR-directed transcriptome to guide the development of novel biomarkers or treatment decisions. This review will provide an overview of the androgen receptor before addressing the challenges and opportunities created by whole-genome studies of the interplay between the androgen receptor and chromatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fluorescence in situ hybridisation (FISH) assay has been used to screen for ETV1 gene rearrangements in a cohort of 429 prostate cancers from patients who had been diagnosed by trans-urethral resection of the prostate. The presence of ETV1 gene alterations (found in 23 cases, 5.4%) was correlated with higher Gleason Score (P=0.001), PSA level at diagnosis (P=<0.0001) and clinical stage (P=0.017) but was not linked to poorer survival. We found that the six previously characterised translocation partners of ETV1 only accounted for 34% of ETV1 re-arrangements (eight out of 23) in this series, with fusion to the androgen-repressed gene C15orf21 representing the commonest event (four out of 23). In 5'-RACE experiments on RNA extracted from formalin-fixed tissue we identified the androgen-upregulated gene ACSL3 as a new 5'-translocation partner of ETV1. These studies report a novel fusion partner for ETV1 and highlight the considerable heterogeneity of ETV1 gene rearrangements in human prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Wnt signaling is thought to be important in prostate cancer, in part because proteins such as beta-catenin can also affect androgen receptor signaling. beta-Catenin forms a cell adhesion complex with E-cadherin raising the possibility that loss of expression or a change in beta-catenin distribution in the cell could also alter downstream signaling, decreased inter-cellular adhesion and the promotion of metastasis. A number of studies have reported the altered expression and/or localization of beta-catenin as a biomarker in prostate cancer.

METHODS: Tissue microarrays comprised of BPH and low, moderate and high-grade prostate cancer (n=77) were assessed for beta-catenin expression and distribution using immunohistochemistry. Staining was also performed on a tissue microarray containing tissue from patients before and after hormone manipulation. The effects of fixation and different antibodies was assessed on fixed LNCaP cell pellets and small prostate tissue microarrays.

RESULTS: We have observed increased beta-catenin expression in only high Gleason score (>7) prostate cancer. A nuclear re-distribution of beta-catenin has previously been reported. We noted nuclear beta-catenin in benign prostatic hyperplasia and a gradual loss in nuclear distribution with increasing Gleason grade. We found no evidence for an alteration in beta-catenin expression or re-distribution with hormone ablation. Altered fixation, antibodies and antibody concentration did affect the intensity and specificity of staining.

CONCLUSIONS: A loss of nuclear beta-catenin is the most consistent feature in prostate cancer rather than absolute levels of expression. We also suggest that variation in immunohistochemical protocols may explain variations in the reported literature.