309 resultados para Type and type-founding
Resumo:
OBJECTIVE Inflammation and endothelial dysfunction have been associated with the immunobiology of preeclampsia (PE), a significant cause of adverse pregnancy outcomes. The prevalence of PE is elevated several fold in the presence of maternal type 1 diabetes mellitus (T1DM). Although cross-sectional studies of pregnancies among women without diabetes have shown altered inflammatory markers in the presence of PE, longitudinal studies of diabetic women are lacking. In maternal serum samples, we examined the temporal associations of markers of inflammation with the subsequent development of PE in women with T1DM. RESEARCH DESIGN AND METHODS We conducted longitudinal analyses of serum C-reactive protein (CRP), adhesion molecules, and cytokines during the first (mean ± SD, 12.2 ± 1.9 weeks), second (21.6 ± 1.5 weeks), and third (31.5 ± 1.7 weeks) trimesters of pregnancy (visits 1-3, respectively). All study visits took place before the onset of PE. Covariates were BMI, HbA1c, age of onset, duration of diabetes, and mean arterial pressure. RESULTS In women with T1DM who developed PE versus those who remained normotensive, CRP tended to be higher at visits 1 (P = 0.07) and 2 (P = 0.06) and was significantly higher at visit 3 (P <0.05); soluble E-selectin and interferon-?-inducible protein-10 (IP-10) were significantly higher at visit 3; interleukin-1 receptor antagonist (IL-1ra) and eotaxin were higher and lower, respectively, at visit 2 (all P <0.05). These conclusions persisted following adjustment for covariates. CONCLUSIONS In pregnant women with T1DM, elevated CRP, soluble E-selectin, IL-1ra, and IP-10 and lower eotaxin were associated with subsequent PE. The role of inflammatory factors as markers and potential mechanisms of the high prevalence of PE in T1DM merits further investigation.
Resumo:
To determine whether immunocomplexes (ICs) containing advanced glycation end product (AGE)-LDL (AGE-LDL) and oxidized LDL (oxLDL) contribute to the development of retinopathy over a 16-year period in subjects with type 1 diabetes.
Resumo:
Context: In nondiabetic pregnancy, cross-sectional studies have shown associations between maternal dyslipidemia and preeclampsia (PE). In type 1 diabetes mellitus (T1DM), the prevalence of PE is increased 4-fold, but prospective associations with plasma lipoproteins are unknown.
Objectives: The aim of this study was to define lipoprotein-related markers and potential mechanisms for PE in T1DM.
Design and Settings: We conducted a multicenter prospective study in T1DM pregnancy.
Patients: We studied 118 T1DM women (26 developed PE, 92 remained normotensive). Subjects were studied at three visits before PE onset [12.2 1.9, 21.6 1.5, and 31.5 1.7 wk gestation (means SD)] and at term (37.6 2.0 wk). Nondiabetic normotensive pregnant women (n 21) were included for reference.
Main Outcome Measures: Conventional lipid profiles, lipoprotein subclasses [defined by size (nuclear magnetic resonance) and by apolipoprotein content], serum apolipoproteins (ApoAI, ApoB, and ApoCIII), and lipolysis (ApoCIII ratio) were measured in T1DM women with and without subsequent PE.
Results: In women with vs. without subsequent PE, at the first and/or second study visits: lowdensity lipoprotein (LDL)-cholesterol, particle concentrations of total LDL and large (but not small) LDL, serum ApoB, and ApoB:ApoAI ratio were all increased (P 0.05); peripheral lipoprotein lipolysis was decreased (P0.01). These early differences remained significant in covariate analysis (glycated hemoglobin, actual prandial status, gravidity, body mass index, and diabetes duration) but were not present at the third study visit. High-density lipoprotein and very low-density lipoprotein subclasses did not differ between groups before PE onset.
Conclusions: Early in pregnancy, increased cholesterol-rich lipoproteins and an index suggesting decreased peripheral lipolysis were associated with subsequent PE in T1DM women. Background maternal lipoprotein characteristics, perhaps masked by effects of late pregnancy, may influence PE risk.
Resumo:
OBJECTIVE To assess the association between circulating angiogenic and antiangiogenic factors in the second trimester and risk of preeclampsia in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS Maternal plasma concentrations of placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), and soluble endoglin (sEng) were available at 26 weeks of gestation in 540 women with type 1 diabetes enrolled in the Diabetes and Preeclampsia Intervention Trial.
RESULTS Preeclampsia developed in 17% of pregnancies (n = 94). At 26 weeks of gestation, women in whom preeclampsia developed later had significantly lower PlGF (median [interquartile range]: 231 pg/mL [120–423] vs. 365 pg/mL [237–582]; P < 0.001), higher sFlt-1 (1,522 pg/mL [1,108–3,393] vs. 1,193 pg/mL [844–1,630] P < 0.001), and higher sEng (6.2 ng/mL [4.9–7.9] vs. 5.1 ng/mL[(4.3–6.2]; P < 0.001) compared with women who did not have preeclampsia. In addition, the ratio of PlGF to sEng was significantly lower (40 [17–71] vs. 71 [44–114]; P < 0.001) and the ratio of sFlt-1 to PlGF was significantly higher (6.3 [3.4–15.7] vs. 3.1 [1.8–5.8]; P < 0.001) in women who later developed preeclampsia. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to a logistic model containing established risk factors (area under the curve [AUC], 0.813) significantly improved the predictive value (AUC, 0.850 and 0.846, respectively; P < 0.01) and significantly improved reclassification according to the integrated discrimination improvement index (IDI) (IDI scores 0.086 and 0.065, respectively; P < 0.001).
CONCLUSIONS These data suggest that angiogenic and antiangiogenic factors measured during the second trimester are predictive of preeclampsia in women with type 1 diabetes. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to established clinical risk factors significantly improves the prediction of preeclampsia in women with type 1 diabetes.
Preeclampsia is characterized by the development of hypertension and new-onset proteinuria during the second half of pregnancy (1,2), leading to increased maternal morbidity and mortality (3). Women with type 1 diabetes are at increased risk for development of preeclampsia during pregnancy, with rates being two-times to four-times higher than that of the background maternity population (4,5). Small advances have come from preventive measures, such as low-dose aspirin in women at high risk (6); however, delivery remains the only effective intervention, and preeclampsia is responsible for up to 15% of preterm births and a consequent increase in infant mortality and morbidity (7).
Although the etiology of preeclampsia remains unclear, abnormal placental vascular remodeling and placental ischemia, together with maternal endothelial dysfunction, hemodynamic changes, and renal pathology, contribute to its pathogenesis (8). In addition, over the past decade accumulating evidence has suggested that an imbalance between angiogenic factors, such as placental growth factor (PlGF), and antiangiogenic factors, such as soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng), plays a key role in the pathogenesis of preeclampsia (8,9). In women at low risk (10–13) and women at high risk (14,15), concentrations of angiogenic and antiangiogenic factors are significantly different between women who later develop preeclampsia (lower PlGF, higher sFlt-1, and higher sEng levels) compared with women who do not.
Few studies have specifically focused on circulating angiogenic factors and risk of preeclampsia in women with diabetes, and the results have been conflicting. In a small study, higher sFlt-1 and lower PlGF were reported at the time of delivery in women with diabetes who developed preeclampsia (16). In a longitudinal prospective cohort of pregnant women with diabetes, Yu et al. (17) reported increased sFlt-1 and reduced PlGF in the early third trimester as potential predictors of preeclampsia in women with type 1 diabetes, but they did not show any difference in sEng levels in women with preeclampsia compared with women without preeclampsia. By contrast, Powers et al. (18) reported only increased sEng in the second trimester in women with pregestational diabetes who developed preeclampsia.
The aim of this study, which was significantly larger than the previous studies highlighted, was to assess the association between circulating angiogenic (PlGF) and antiangiogenic (sFlt-1 and sEng) factors and the risk of preeclampsia in women with type 1 diabetes. A further aim was to evaluate the added predictive ability and clinical usefulness of angiogenic factors and established risk factors for preeclampsia risk prediction in women with type 1 diabetes.
Resumo:
An impaired glomerular filtration rate (GFR) leads to end-stage renal disease and increases the risks of cardiovascular disease and death. Persons with type 1 diabetes are at high risk for kidney disease, but there are no interventions that have been proved to prevent impairment of the GFR in this population.
Resumo:
Increased oxidative stress and immune dysfunction are implicated in preeclampsia (PE) and may contribute to the two- to fourfold increase in PE prevalence among women with type 1 diabetes. Prospective measures of fat-soluble vitamins in diabetic pregnancy are therefore of interest.
Resumo:
Microalbuminuria is a common diagnosis in the clinical care of patients with type 1 diabetes mellitus. Long-term outcomes after the development of microalbuminuria are variable.
Resumo:
Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes.
Resumo:
Clinical treatment goals of type 1 diabetes mellitus (T1DM) have changed since the Diabetes Control and Complications Trial (DCCT) demonstrated reduced long-term complications with intensive diabetes therapy. There have been few longitudinal studies to describe the clinical course of T1DM in the age of intensive therapy. Our objective was to describe the current-day clinical course of T1DM.
Resumo:
Coated-platelet levels were quantified in 58 people with Type 1 diabetes, 90 with Type 2 diabetes, and 54 non-diabetic controls. In diabetes high coated-platelet levels were related to smoking and glucose control drugs, but not to glycaemia or other drugs. Prospective studies should evaluate coated-platelets and complications and drug effects.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.
Resumo:
Type 1 diabetes mellitus is associated with an increased risk of cardiovascular disease (CVD) that is not fully explained by conventional risk factors. The Diabetes Control and Complications Trial (DCCT) showed that intensive diabetes therapy reduced levels of LDL cholesterol and triglycerides but increased the risk of major weight gain, which might adversely affect CVD risk. The present study examined the effect of intensive therapy on levels of several markers of inflammation that have been linked to risk of CVD.
Resumo:
We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.