382 resultados para Transferrin Receptor
Resumo:
Much recent attention has focused on the GLP-1 receptor as a potential target for antidiabetic drugs. Enzyme resistant GLP-1 mimetics such as exenatide are now employed for the treatment of type 2 diabetes, but must be administered by injection. The present study has examined and compared the in vitro and in vivo metabolic actions of a small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB), with native GLP-1, exenatide and liraglutide. DMB significantly stimulated in vitro insulin secretion from BRIN-BD11 cells but with decreased molar potency compared to native GLP-1 or related mimetics. Administration of DMB in combination with glucose to mice significantly (P
Resumo:
The 67LR (67 kDa laminin receptor) enables cells to interact with components of the extracellular matrix The molecule is derived from the 37LRP (37 kDa laminin receptor precursor); however, the precise molecular mechanism of this conversion is unknown. Recombinant 37LRP expressed in and purified from Escherichia colt, bound to human laminin in a SPR (surface plasmon resonance) experiment. 67LR isolated from human breast-cancer-derived cells in culture was also shown to bind to laminin by SPR. However, the kinetics of association are qualitatively different. 37LRP but not 67LR, binds to heparan sulfate. The binding of 37LRP to heparan sulfate did not affect the interaction of 37LRP with laminin In contrast, heparan sulfate reduces the extent of binding of laminin to 67LR. Taken together, these results show that 37LRP has some of the biological activities of 67LR, even prior to the conversion event. However, the conversion affects the sites of interaction with both laminin and heparan sulfate.
Resumo:
Aims/hypothesis: Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia.
Methods: Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting.
Results: Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia.
Conclusions/interpretation: Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.
Resumo:
The 67kDa laminin receptor (67LR) plays an important role in vascular cell function and dysfunction. The present study has examined 67LR expression in retinal microvascular endothelial cells after exposure to AGEs. Retinal microvascular endothelial cells were exposed to either AGE-BSA, or were grown on methylglyoxal-modified laminin or Matrigel (TM) and expression of 67LR analysed by Western Blotting and RT-PCR/Southern blotting. Western blotting of plasma membrane and RT-PCR/Southern blotting revealed a significant upregulation of 67LR protein/mRNA expression after exposure to AGEs (p
Resumo:
This study has examined the localisation and receptor-binding of the endothelins in retina and choroid of human and rat origin. Immunoreactivity to anti-ET1 and anti-ET3 was investigated in trypsin digests, frozen sections and ultrathin sections using immunocytochemistry and immunogold labelling techniques. In addition, receptor binding of 125I-ET1 and 125I-ET3 was visualised and quantified using autoradiography and image analysis. Intense immunoreactivity to anti-ET1 and anti-ET3 was observed in the photoreceptor inner segments and in the outer plexiform layer (OPL) of human and rat retina. Ultrastructural localisation using immunogold labelling confirmed the presence of ET1 and ET3 in the photoreceptor cells. In retinal vascular digests, ET1 was visualised in the arteries, arterioles and at the pre-arteriolar sphincters, however, immunoreactivity to anti-ET3 was absent in the retinal vasculature. Both ETA and ETB-type receptor binding sites to 125I-ET1 and 125I-ET3 were detected in the vascular smooth muscle of choroidal and retinal vessels with the former being predominant. Extravascular binding sites of the ETB-type were found in the ganglion cell layer.
Resumo:
We examined the extent to which the systemic and renal vasoconstriction induced by nitric oxide (NO) inhibition in vivo is mediated by endothelin (ET). We examined the effects of BQ-610, a specific ETA-receptor antagonist, after NO inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) in the anesthetized rat. Mean arterial pressure (MAP) increased after L-NAME infusion from 107 +/- 2 to 133 +/- 3 mmHg (P
Resumo:
Generated data, interpreted results and helped write and edit the manuscript.
Resumo:
Background. Vitamin D and its analogues are reported to have renoprotective effects in chronic kidney disease including diabetic nephropathy (DN). Vitamin D3 is converted to 1,25(OH) D3 by CYP2R1 and CYP27B1. The biological action of 1,25(OH) D3 is mediated via its receptor. VDR, CYP27B1 or CYP2R1 gene variants could modify the biological activity of vitamin D3. We have conducted the first case- control association study to determine the relationship between polymorphisms in VDR, CYP27B1 and CYP2R1 genes, and the risk of DN in individuals with type 1 diabetes.
Resumo:
The mechanism by which extracellular ADP ribose (ADPr) increases intracellular free Ca2+ concentration ([Ca2+](i)) remains unknown. We measured [Ca2+](i) changes in fura-2 loaded rat insulinoma INS-1E cells, and in primary beta-cells from rat and human. A phosphonate analogue of ADPr (PADPr) and 8-Bromo-ADPr (8Br-ADPr) were synthesized. ADPr increased [Ca2+](i) in the form of a peak followed by a plateau dependent on extracellular Ca2+. NAD(+), cADPr, PADPr, 8Br-ADPr or breakdown products of ADPr did not increase [Ca2+](i). The ADPr-induced [Ca2+](i) increase was not affected by inhibitors of TRPM2, but was abolished by thapsigargin and inhibited when phospholipase C and IP3 receptors were inhibited. MRS 2179 and MRS 2279, specific inhibitors of the purinergic receptor P2Y1, completely blocked the ADPrinduced [Ca2+](i) increase. ADPr increased [Ca2+](i) in transfected human astrocytoma cells (1321N1) that express human P2Y1 receptors, but not in untransfected astrocytoma cells. We conclude that ADPr is a specific agonist of P2Y1 receptors. (c) 2010 Elsevier Ireland Ltd. All rights reserved.