233 resultados para Tissue Dissolution
Resumo:
The dissolution of MnS inclusions could induce pitting corrosion in stainless steels, but its dissolution mechanism is poorly understood at the atomic scale. With the help of ab initio molecular dynamics calculations, one inevitable step in the dissolution of MnS is studied by simulating the process of one Mn ion leaving the surface. The reaction mechanism is determined to contain three steps with two large barriers and a small one, leading to two slow steps in the Mn ion dissolution. Comparing to the Na ion dissolution from NaCl, the barriers of the Mn ion dissolution are much larger, which is a reflection of their different electronic structures.
Resumo:
To understand pitting corrosion in stainless steel is very important, and a recent work showed that the MnS dissolution catalyzed by MnCr2O4{111} is a starting point of pit g. This demonstrates the need to understand the oxygen reduction reaction (ORR) on MnCr2O4{111}, which is the other half-reaction to complete pitting corrosion. In this study, the adsorption behaviors of all oxygen-containing species on MnCr2O4{111}, which has several possible terminations, are explored via density functional theory calculations. It is found that O-2 adsorbs on MnCr2O4{111) surfaces very strongly. Many possible reactions are investigated and the favored reaction mechanism of ORR is determined. The interactions between O-2 and H2O on the two metal-terminated MriCr(2)O(4){111} are found to be different according to the atomic configurations of the two surfaces. All the calculated results suggest that ORR can readily occur on the MnCr2O4{111} surfaces.
Resumo:
The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.
Resumo:
Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.
Resumo:
Cellulose is dissolved in an ionic liq. without derivatization, and is regenerated in a range of structural forms without requiring the use of harmful or volatile org. solvents. Cellulose soly. and the soln. properties can be controlled by the selection of the ionic liq. constituents, with small cations and halide or pseudohalide anions favoring soln.; dissoln. can be aided by irradn. An ionic liq., [C4mim]Cl, proved to be the best for dissolving cellulose. [on SciFinder(R)]
Resumo:
The ionic liqs. are for the dissoln. of various polymers and/or copolymers, the formation of resins and blends, and the reconstitution of polymer and/or copolymer solns., and the dissoln. and blending of functional additives and/or various polymers and/or copolymers. Thus, ≥1 ionic liq., which is a liq. salt complex that exists in the liq. phase between about -70 to 300°, is mixed with ≥2 differing polymeric materials to form a mixt., and adding a nonsolvent to the mixt. to remove the ionic liq. from the resin or blend. [on SciFinder(R)]
Resumo:
Bioresorbable polymers increasingly are the materials of choice for implantable orthopaedic fixation devices. Controlled degradation of these polymers is vital for preservation of mechanical properties during tissue repair and controlled release of incorporated agents such as osteoconductive or anti-microbial additives. The work outlined in this paper investigates the use of low energy electron beam irradiation to surface modify polyhydroxyacid samples incorporating beta tricalcium phosphate (β-TCP). This work uniquely demonstrates that surface modification of bioresorbable polymers through electron beam irradiation allows for the early release of incorporated agents such as bioactive additives. Samples were e-beam irradiated at an energy of 125 keV and doses of either 150 kGy or 500 kGy. Irradiated and non-irradiated samples were degraded in phosphate buffered saline (PBS), to simulate bioresorption, followed by characterisation. The results show that low energy e-beam irradiation enhances surface hydrolytic degradation in comparison to bulk and furthermore allows for earlier release of incorporated calcium via dissolution into the surrounding medium.
Resumo:
Standard identification systems usually ensure that biopsy material is correctly associated with a given patient. Sometimes, as when a tumor is unexpectedly found, the provenance (proof of origin) of a tissue sample may be questioned; the tissue may have been mislabelled or contaminated with tissue from another patient. Techniques used to confirm tissue provenance include comparing either tissue markers of gender or ABO blood groups; however, these methods have weak confirmatory power. Recently, the use of DNA-based polymerase chain reaction (PCR) techniques has been reported. Paired, formalin-fixed, paraffin-embedded, 10 microns tissue sections were selected from 17 patients, 8 of whom had carcinoma, either by dividing a biopsy section, using sequential biopsies, or sequential biopsy and autopsy tissue. The resulting 36 samples were coded before analysis. In two additional cases, 1-mm fragments of tumor from one patient were included in the tissue block of benign tissue from another patient, the tumor fragments were identified on hematoxylin-and-eosin-stained sections, separately scraped off the glass slide, and analyzed. Tissue from two clinical cases, one of suspected mislabelling and one with a suspected carry-over of malignant tissue were also investigated. Short tandem repeat sequences (STR) or microsatellites, are 2-5 base pair repeats that vary in their repeat number between individuals. This variation (polymorphism) can be assessed using a PCR. A panel of markers of 3 STRs; ACPP, INT 2, and CYP 19 (on chromosomes 3, 11, and 15, respectively) were used. DNA was isolated from the samples after xylene deparaffinization and proteinase digestion, and was then amplified in a radioactive PCR using primers selected to give a product size ranging from 136-178 bases. Amplified products were electrophoresed on denaturing polyacrylamide gels, dried, and autoradiographed. DNA segments were successfully extracted from all samples but one, which was fixed in Bouin's fluid. By comparing allele sizes from the panel, all tissue pairs (other than the Bouin's pair) were successfully matched, the 1-mm tumor fragments were correctly assigned, and the two clinical problems were solved. STRs are highly informative and robust markers, well suited to PCR of small portions of tissue sections, and are an effective method to confirm the provenance of benign and malignant biopsy and autopsy material.