232 resultados para Serum chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory atherosclerosis is increased in subjects with type 1 diabetes mellitus (T1DM). Normally high-density lipoproteins(HDL) protect against atherosclerosis; however, in the presence of serum amyloid-A- (SAA-) related inflammation this propertymay be reduced. Fasting blood was obtained from fifty subjects with T1DM, together with fifty age, gender and BMI matchedcontrol subjects. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Serum-hsCRP and serum-, HDL2-,and HDL3-SAA were measured by ELISAs. Compared to control subjects, SAA was increased in T1DM subjects, nonsignificantly inserum (P = 0.088), and significantly in HDL2 (P  = 0.003) and HDL3 (P  = 0.005). When the T1DM group were separated accordingto mean HbA1c (8.34%), serum-SAA and HDL3-SAA levels were higher in the T1DM subjects with HbA1c ≥ 8.34%, compared towhen HbA1c was <8.34% (P  < 0.05). Furthermore, regression analysis illustrated, that for every 1%-unit increase in HbA1c, SAAincreased by 20% and 23% in HDL2 and HDL3, respectively, independent of BMI. HsCRP did not differ between groups (P  > 0.05).This cross-sectional study demonstrated increased SAA-related inflammation in subjects with T1DM that was augmented by poorglycaemic control. We suggest that SAA is a useful inflammatory biomarker in T1DM, which may contribute to their increasedatherosclerosis risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoresponsive oligonucleotides (ONs) incorporating isoxazole-linked azobenzene (AB) moieties were prepared by resin-supported nitrile oxide-alkyne cycloaddition (NOAC) chemistry. The thermal and photochromic properties of the modified ONs were significantly influenced by the extent of pi-conjugation between the isoxazole and the AB modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding and then designing efficient catalysts for CO oxidation at low temperature is one of the hottest topics in heterogeneous catalysis. Among the existing catalysts. Co3O4 is one of the most interesting systems: Morphology-controlled Co3O4 exhibits exceedingly high activity. In this study, by virtue of extensive density functional theory (OFT) calculations, the favored reaction mechanism in the system is identified. Through careful analyses on the energetics of elementary reactions on Co3O4(1 1 0)-A, Co3O4(1 1 0)-B, Co3O4(1 1 1) and Co3O4(1 0 0), which are the commonly exposed surfaces of Co3O4, we find the following regarding the relation between the activity and structure: (i) Co3+ is the active site rather than Co2+: and (ii) the three-coordinated surface oxygen bonded with three Co3+ may be slightly more reactive than the other two kinds of lattice oxygen, that is, the two-coordinated 0 bonded with one Co2+ and one Co3+ and the three-coordinated 0 bonded with one Co2+ and two Co3+. Following the results from Co3O4, we also extend the investigation to MnO2(1 1 0), Fe3O4(1 1 0), CuO(1 1 0) and CuO(1 1 1), which are the common metal oxide surfaces, aiming to understand the oxides in general. Three properties, such as the CO adsorption strength, the barrier of CO reacting with lattice 0 and the redox capacity, are identified to be the determining factors that can significantly affect the activity of oxides. Among these oxides, Co3O4 is found to be the most active one, stratifying all the three requirements. A new scheme to decompose barriers is introduced to understand the activity difference between lattice O-3c and O-2c on (1 1 0)-B surface. By utilizing the scheme, we demonstrate that the origin of activity variance lies in the geometric structures. (C) 2012 Elsevier Inc. All rights reserved.