242 resultados para Peptide Hormones


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones released from intestinal enteroendocrine (EE) cells and have well-established glucose-lowering actions. Lactic acid bacteria (LAB) colonise the human intestine, but it is unknown whether LAB and EE cells interact. Acute co-culture of LAB with EE cells showed that certain LAB strains elicit GLP-1 and GIP secretion (13-194-fold) and upregulate their gene expression. LAB-induced incretin hormone secretion did not appear to involve nutrient mechanisms, nor was there any evidence of cytolysis. Instead PCR array studies implicated signalling agents of the toll-like receptor system, e.g. adaptor protein MyD88 was decreased 23-fold and cell surface antigen CD14 was increased 17-fold. Mechanistic studies found that blockade of MyD88 triggered significant GLP-1 secretion. Furthermore, blocking of CD14 completely attenuated LAB-induced secretion. A recent clinical trial clearly shows that LAB have potential for alleviating type 2 diabetes, and further characterisation of this bioactivity is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptidic nature of anti-IAPs N-terminus Smac-derived peptides precludes their utilization as potential therapeutic anticancer agents. Recent advances in the development of novel Smac-derived peptidomimetics and non-peptidic molecules with improved anti-IAPs activity and resistance to proteolytic cleavage have been reported and led to a number of candidates that are currently in clinical trials including LCL-161, SM-406/AT-406, GDC-0512/GDC-0917, and birinapant. As an attempt to improve the proteolytic stability of Smac peptides, we developed the Aza-peptide AzaAla-Val-Pro-Phe-Tyr-NH2 (2). Unlike unmodified peptide Ala-Val-Pro-Phe-Tyr-NH2 (1), analogue (2) exhibited resistance towards proteolytic cleavage by two aminopeptidases; LAP and DPP-IV, while retaining its IAP inhibitory activity. This was due to the altered planar geometry of the P1 residue side chain. Our findings showed that using aza-isosteres of bioactive peptide sequences imbue the residue with imperviousness to proteolysis; underscoring a potential approach for developing a new generation of Smac-derived Aza-peptidomimetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).

Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin, and particularly that of south/Central American phyllomedusine frogs, is supposed to be "a huge factory and store house of a variety of active peptides". The 40 amino acid amphibian CRF-like peptide, sauvagine, is a prototype member of a unique family of these Phyllomedusa skin peptides. In this study, we describe for the first time the structure of a mature novel peptide from the skin secretion of the South American orange-legged leaf frog, Phyllomedusa hypochondrialis, which belongs to the amphibian CRF/sauvagine family. Partial amino acid sequence from the N-terminal was obtained by automated Edman degradation with the following structure: pGlu-GPPISIDLNMELLRNMIEI-. The biosynthetic precursor of this novel sauvagine peptide, consisted of 85 amino acid residues and was deduced from cDNA library constructed from the same skin secretion. Compared with the standard sauvagine from the frog, Phyllomedusa sauvagei, this novel peptide was found to exert similar contraction effects on isolated guinea-pig colon and rat urinary bladder smooth muscle preparations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.