295 resultados para Lymphocytosis -- immunology
Resumo:
Purpose of review: The aim of this article is to summarize the latest information on microbicide formulations for prevention of sexual transmission of HIV infection in women. Recent findings: Although early microbicide formulations were conventionally coitally dependent gel products, new technologies are being developed for vaginal delivery of anti-HIV agents. Intravaginal rings for delivery of microbicides, for example, are being developed and evaluated clinically. Safety and acceptability data are available for many microbicide gels and for one microbicide intravaginal ring. Other microbicide formulations in development for once daily or other vaginal administration strategies include films, tablets, and ovules. Various microbicide formulations for rectal administration are also in development. Summary: New microbicide formulations in development are addressing many of the issues with the original gels such as coital dependency, frequency of use, acceptability, compliance, cost, and adaptability to large-scale production. All of these dosage forms are promising options for safe, effective, and acceptable microbicide products.
Resumo:
Erythrocytosis can arise from deregulation of the erythropoietin (Epo) axis resulting from defects in the oxygen-sensing pathway. Epo synthesis is controlled by the hypoxia inducible factor (HIF) complex, composed of an a and a ß subunit. There are 2 main a subunits, HIF-1a and HIF-2a. Recently, a HIF-2a Gly537Trp mutation was identified in a family with erythrocytosis. This raises the possibility of HIF2A mutations being associated with other cases of erythrocytosis. We now report a subsequent analysis of HIF2A in a cohort of 75 erythrocytosis patients and identify 4 additional patients with novel heterozygous Met535Val and Gly537Arg mutations. All patients presented at a young age with elevated serum Epo. Mutations at Gly-537 account for 4 of 5 HIF2A mutations associated with erythrocytosis. These findings support the importance of HIF-2a in human Epo regulation and warrant investigation of HIF2A in patients with unexplained erythrocytosis.
Resumo:
Multidrug resistance (NIDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with NIDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2AS(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.
Resumo:
The microsporidian parasite, Pleistophora mulleri, infects the abdominal muscle of the freshwater amphipod Gammarus duebeni celticus. We recently showed that P. mulleri infection was associated with G. d. celticus hosts being more vulnerable to predation by the invasive amphipod Gammarus pulex. Parasitized G. d. celticus also had a reduced ability to prey upon other co-occurring amphipods. We suggested the parasite may have pervasive influences on host ecology and behaviour. Here, we examine the association between P. mulleri parasitism and parameters influencing individual host fitness, behaviour and interspecific interactions. We also investigate the relationship between parasite prevalence and host population structure in the field. In our G. d. celticus study population, P. mulleri prevalence was strongly seasonal, ranging from 8.5% in summer to 44.9% in winter. The relative abundance of hosts with the heaviest parasite burden increased during summer, which coincided with high host mortality, suggesting that parasitism may regulate host abundance to some degree. Females were more likely to be parasitized than males and parasitized males were paired with smaller females than unparasitized males. Parasitism was associated with reduction in the host's activity level and reduced both its predation on the isopod Asellus aquaticus and aggression towards precopula pairs of the invasive G. pulex. We discuss the pervasive influence of this parasite on the ecology of its host.
Resumo:
Short peptides with sequences derived from those found in the tegumental antigen of Fasciola hepatica have been synthesised. Incubation of some of these peptides with rat peritoneal mast cells resulted in the degranulation of the cells as measured by a histamine release assay. This activity was shown to be associated with the proline-lysine-proline motif, which is responsible for the induction of mast cell degranulation by the mammalian bioactive peptide substance P. Studies on the mode of action of the fluke-derived peptide indicated that it was operating through the same biochemical pathways as substance P. The implications of these findings for the development of immune responses during parasite infections are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery Of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited Understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.
Resumo:
We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to Muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to + 20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4(.)1 mu M). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome Muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Furthermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 mu M) or ryanodine (10 mu M). These data suggest that voltage-operated Ca2+ channels docontribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.
Resumo:
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for -tubulin, but not pericentrin, from the MTOC suggests a targeting of -tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro. In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected.
Resumo:
Background: The Common Sense Model (CSM) of illness representations was used in the current study to examine the relative contribution of illness perceptions and coping strategies in explaining adjustment to inflammatory bowel disease (IBD). Methods: Participants were 80 adults consecutively attending an outpatients' clinic with a diagnosis of either Crohn's disease or ulcerative colitis. Respondents completed and returned a questionnaire booklet that assessed illness perceptions, coping, and adjustment. Adjustment was measured from the perspectives of psychological distress, quality of life, and functional independence. Results: Illness perceptions (particularly perception of consequences of IBD) were uniformly the most consistent variables explaining adjustment to IBD. Coping did not significantly add to predicting adjustment once illness perceptions were controlled for and therefore did not mediate the relationship between illness perceptions and adjustment, as proposed in the CSM. Conclusions: The results suggest the importance of addressing illness perceptions in developing appropriate psychological interventions for IBD.