346 resultados para Homocysteine Levels
Resumo:
In order to assess the rationale and possible indications for the use of recombinant erythropoietin in paroxysmal nocturnal haemoglobinuria (PNH), we have measured endogenous erythropoietin (Epo) levels in 18 patients with PNH and in 44 patients with iron deficiency anaemia (IDA), In both groups of patients we found a significant inverse correlation between Epo and haemoglobin (Hb). However, the mean Epo level was significantly higher in the PNH group (385 mU/ml) than in the IDA group (136 mU/ml), The range of Epo levels at any given Hb was greater in the PNH group than in the IDA group. There was a significant positive correlation between Epo and absolute reticulocyte count, Since Epo administration is unlikely to benefit patients with high levels of endogenous Epo, we conclude that in the majority of patients with PNH there is no indication for treatment with Epo.
Resumo:
Oxidative stress may increase lung permeability by upregulation of matrix-metalloproteinase-9 (MMP-8), a type-IV collagenase that can disrupt alveolar basement membranes. We have compared a marker of oxidative stress (protein carbonyl residues) with levels of MMP-8 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in bronchoalveolar lavage samples from newborn babies. Bronchoalveolar lavage samples (n = 87, two from each time point) were taken in the first 6 postnatal days from 41 ventilated babies: 18 of
Resumo:
We have determined photoionization spectra of Ar with excitation of the 3p(4)(P-3)4p states emphasizing the effects of two different classes of Ar+ spin-orbit interactions. The spin-orbit splitting of each Ar+ state adequately describes the resonant excitation of the quartet states of Ar+, and gives Ar photoionization cross sections with excitation of the 3p4(3P)4p P-2(3/2)o and P-4(5/2)o levels of Ar+ in sufficiently good agreement with experiment to identify the observed resonances and to estimate the excitation strengths. In addition, we demonstrate the importance of spin-orbit induced mixing of different Ar+ LS-coupled states for observables such as the alignment of the 3p(4)(P-3)4p P-4(5/2)o level and the excitation of Rydberg series converging to the 3p(4)(P-3)4p S-2(o) and S-4(o) thresholds.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
Background: Evidence on the association between social support and leisure time physical activity (LTPA) is scarce and mostly based on cross-sectional data with different types of social support collapsed into a single index. The aim of this study was to investigate whether social support from the closest person was associated with LTPA.
Resumo:
We report the functional characterization of the galF gene of strain VW187 (Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo, GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF-/galU+ and galF/galU+ isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo. We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.
Resumo:
We consider the stimulated Raman transition between two long-lived states via multiple intermediate states, such as between hyperfine ground states in the alkali-metal atoms. We present a concise treatment of the general, multilevel, off-resonant case, and we show how the lightshift emerges naturally in this approach. We illustrate our results by application to alkali-metal atoms and we make specific reference to cesium. We comment on some artifacts, due solely to the geometrical overlap of states, which are relevant to existing experiments.
Resumo:
Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.
Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.
Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.
Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.
Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.
Resumo:
Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.