401 resultados para room temperature ionic liquids
Resumo:
Heterogeneous immobilized ionic liquid catalysts were prepared via grafting of 1,3-dimethyl-3-(3-triethoxysilylpropyl)-imidazolium tetrafluoroborate or bist{(trifluoromethyl)sulfonyl} imide ([NTf2](-)) on silica supports with different surfaces and pore size. In addition to the adsorption-desorption isotherms of nitrogen at -196C, the catalysts were characterized by TG-DTA, XPS, DRIFTS, DR-UV-vis, NMR, and XRD techniques. The catalytic behavior was checked in the acylation of three different sulfonamines: benzenesulfonamine, p-nitrobenzene-sulfonamine, and p-methoxybenzene-sulfonamine with acetic acid, acetic anhydride and maleic anhydride. These tests confirmed the acid Lewis properties of these catalysts. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This Account describes experimental data used to understand the structure of ionic liquids and solute-solvent interactions of both molecular solutes and dissolved metal complexes. In general, the structures of the ionic liquids determined from experimental data show good agreement with both simulated structures and solid-state structures. For all ionic liquids studied, strong charge ordering is found leading to long-range order even in the presence of a solute. For dissolved metal complexes, the ionic liquid is not innocent and a clear dependence on the speciation is observed with variations in both the cation and anion.
Resumo:
The comparative study of the voltammetry of H[NTf2], HCl and H[AuCl4] in [C(4)mim][NTf2] has provided an insight into the influence of protons on the reduction of [AuCl4](-) at Au, Pt or glassy carbon (GC) electrodes, and has allowed the identification of an unprecedented proton-induced electroless deposition of Au on relatively inert GC surfaces. For the first time, clear evidence of the quantitative formation of [HCl2](-) has been obtained in HCl/[C(4)mim][NTf2] mixtures, and the electrochemical behavior of these mixtures analyzed. In particular, a significant shift of the dissociation equilibrium toward the formation of chloride and the solvated proton (H-IL(+)), following electrochemical reduction of H-IL(+) has been observed in the time-scale of the experiments.
Resumo:
A series of Hunig's base tethered ammonium ionic liquids have been used to catalyse the Knoevenagel condensation of aldehydes/ketones with malononitrile and ethyl cyanoacetate. The reactions were performed under homogeneous and under biphasic, liquid-liquid and liquid-silica supported ionic liquid, conditions with the biphasic systems employing cyclohexene as the second phase. By increasing the distance between the ammonium head group and Hunig's base the activity of the catalyst was found to increase. Higher activity, in general, was found under homogeneous reaction conditions; however, the recyclability of the catalyst was improved by supporting the BIL under biphasic conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
For the first time, the electrochemistry of gold has been studied in detail in a 'second-generation', non-haloaluminate, ionic liquid. In particular, the electrochemical behaviour of Na[AuCl4] has been investigated in 1-butyl-3-methylimidazolium bis{(tifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], over gold, platinum and glassy carbon working electrodes. The reduction of [AuCl4](-) initially forms [AuCl2](-) before deposition on the electrode as Au(0). To enable stripping of deposited gold or electrodissolution of bulk gold, the presence of chloride, trichloride or chlorine is required. Specifically trichloride and chlorine have been identified as the active species which preferentially form Au(I) and Au(III), respectively.
Resumo:
The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sulfoxidation reactions of 4,6-dimethyl-2-methylthiopyrimidine have been performed using titanosilicate catalysts in ionic liquids, dioxane and ethanol. The ionic liquid reactions showed superior reactivity compared with molecular solvents. Moreover, on examination of the recycling of the catalyst, a significant increase in the stability of catalyst was found both in terms of recycling activity and leaching of the titanium from the catalyst. The mechanism by which the ionic liquid reduces the solubilisation of the catalysts is explored.
Resumo:
The determination of chloride impurities in ionic liquids using ion chromatography is described. A wide range of cation-anion combinations may be analyzed using ion chromatography, including water-immiscible ionic liquids. For all ionic liquids studied, the limit of quantification for chloride was found to be below 8 ppm.
Resumo:
Asymmetric Diels-Alder reactions using platinum complexes of BINAP, or of conformationally flexible NUPHOS-type diphosphines, have been compared in dichloromethane and selected ionic liquids. Significant enhancements in the enantioselectivity (Deltaee approximate to 20%), as well as reaction rate, were achieved in ionic liquids compared with the organic media.
Resumo:
The determination of chloride impurities in water miscible and water immiscible ionic liquids has been explored using ion chromatography (IC) and cathodic stripping voltammetry (CSV). This paper shows the first quantification of chloride in [NTf2](-) based ILs. The parameters investigated include sample preparation, solvent effect, sample stability, and limit of quantification (LOQ).