241 resultados para pack hike test
Resumo:
Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
How subtle are the biases that shape the fidelity of the fossil record? A test using marine molluscs
Resumo:
Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.
Resumo:
Queen's University Belfast and Wave Barrier Ltd have developed a tidal testing platform to test hydrokinetic turbines at medium scale. Multiple turbines can be pushed through still water conditions, in steady-state pushing tests. Experiments were conducted to evaluate the interactions between two identical, mono-strut, horizontal axis tidal turbines (HATTs) of 1.5 m diameter (D) rotor. Their relative performance when located individually, in-plane and in-line are investigated. The data shows a high consistency in the power curves at different flow speeds, which indicates high repeatability in this Reynolds range. For an individual turbine, there is no performance difference when the rotor is mounted either upstream or downstream of the supporting structure. When placed in-plane, the turbines have no adverse effect on one another. When spaced in-line with 2D separation, there is a 63% reduction in the performance of the downstream turbine. At 6D downstream this performance reduction is still 59%, indicating some wake recovery between 2D and 6D, though the influence from the upstream rotor persists to at least 6D downstream of the first device. In contrast the performance of the downstream turbine when placed at 1.5D offset of the upstream device at 6D downstream is approximately recovered to the individual turbine performance.
Resumo:
BACKGROUND: Despite vaccines and improved medical intensive care, clinicians must continue to be vigilant of possible Meningococcal Disease in children. The objective was to establish if the procalcitonin test was a cost-effective adjunct for prodromal Meningococcal Disease in children presenting at emergency department with fever without source.
METHODS AND FINDINGS: Data to evaluate procalcitonin, C-reactive protein and white cell count tests as indicators of Meningococcal Disease were collected from six independent studies identified through a systematic literature search, applying PRISMA guidelines. The data included 881 children with fever without source in developed countries.The optimal cut-off value for the procalcitonin, C-reactive protein and white cell count tests, each as an indicator of Meningococcal Disease, was determined. Summary Receiver Operator Curve analysis determined the overall diagnostic performance of each test with 95% confidence intervals. A decision analytic model was designed to reflect realistic clinical pathways for a child presenting with fever without source by comparing two diagnostic strategies: standard testing using combined C-reactive protein and white cell count tests compared to standard testing plus procalcitonin test. The costs of each of the four diagnosis groups (true positive, false negative, true negative and false positive) were assessed from a National Health Service payer perspective. The procalcitonin test was more accurate (sensitivity=0.89, 95%CI=0.76-0.96; specificity=0.74, 95%CI=0.4-0.92) for early Meningococcal Disease compared to standard testing alone (sensitivity=0.47, 95%CI=0.32-0.62; specificity=0.8, 95% CI=0.64-0.9). Decision analytic model outcomes indicated that the incremental cost effectiveness ratio for the base case was £-8,137.25 (US $ -13,371.94) per correctly treated patient.
CONCLUSIONS: Procalcitonin plus standard recommended tests, improved the discriminatory ability for fatal Meningococcal Disease and was more cost-effective; it was also a superior biomarker in infants. Further research is recommended for point-of-care procalcitonin testing and Markov modelling to incorporate cost per QALY with a life-time model.
Resumo:
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of 'gold standard' tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies.
Resumo:
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells.