215 resultados para GHZ
Resumo:
The 5G network infrastructure is driven by the evolution of today's most demanding applications. Already, multimedia applications such as on-demand HD video and IPTV require gigabit- per-second throughput and low delay, while future technologies include ultra HDTV and machine-to-machine communication. Mm-Wave technologies such as IEEE 802.15.3c and IEEE 802.11ad are ideal candidates to deliver high throughput to multiple users demanding differentiated QoS. Optimization is often used as a methodology to meet throughput and delay constraints. However, traditional optimization techniques are not suited to a mixed set of multimedia applications. Particle swarm optimization (PSO) is shown as a promising technique in this context. Channel-time allocation PSO (CTA-PSO) is successfully shown here to allocate resource even in scenarios where blockage of the 60 GHz signal poses significant challenges.
Resumo:
To alleviate practical limitations in the design of mm-wave on-chip image-reject filters, systematic design methodologies are presented. Three low-order filters with high-selectivity and low-loss characteristics are designed and compared. Transmission zeroes are created by means of a quarter-wave transmission line (filter 1) and a series LC resonator (filters 2 and 3). Implemented on SiGe, the filters occupy 0.125, 0.064, and 0.079 mm2 chip area including pads. The measured transmission
losses across 81-86 GHz E-Band frequency range are 3.6-5.2 dB for filter 1, 3.1-4.7 dB for filter 2 and 3.6-5 dB for filter 3 where rejection levels at the image band are greater than 30 dB.
Resumo:
A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.
Resumo:
A dual/triband evanescent waveguide antenna elementis presented. The antenna operates in the 740–790, 1.9–2.2, and2.5–2.7 GHz frequency bands. It measures 55 3 27.5 3 53 mm3andoccupies a small volume making it attractive for miniaturized applica-tions
Resumo:
Fully Homomorphic Encryption (FHE) is a recently developed cryptographic technique which allows computations on encrypted data. There are many interesting applications for this encryption method, especially within cloud computing. However, the computational complexity is such that it is not yet practical for real-time applications. This work proposes optimised hardware architectures of the encryption step of an integer-based FHE scheme with the aim of improving its practicality. A low-area design and a high-speed parallel design are proposed and implemented on a Xilinx Virtex-7 FPGA, targeting the available DSP slices, which offer high-speed multiplication and accumulation. Both use the Comba multiplication scheduling method to manage the large multiplications required with uneven sized multiplicands and to minimise the number of read and write operations to RAM. Results show that speed up factors of 3.6 and 10.4 can be achieved for the encryption step with medium-sized security parameters for the low-area and parallel designs respectively, compared to the benchmark software implementation on an Intel Core2 Duo E8400 platform running at 3 GHz.
Resumo:
This study reports the performance of an Archimedean spiral antenna, which exhibits unidirectional circularly polarized radiation patterns with a peak gain >8 dBic in the lower (2.4–2.485 GHz) and upper (5.15–5.35 and 5.725–5.875 GHz) Wireless local area network frequency bands. The required backlobe suppression and impedance match are obtained by placing a multiresonant high impedance surface (HIS) in close proximity to the radiating aperture. Simulated and measured radiation patterns are shown at the center frequency of all three channels and a comparison of the key performance metrics is made with free space and metal backed antenna arrangements to demonstrate the enhancements which are attributed to the HIS reflector.
Resumo:
Two Liquid crystal-based reflectarrays that operate at 100 GHz and 125 GHz are presented. The first prototype (100 GHz) is used to validate the modeling and the design procedure proposed for this class of antenna. Experimental validation of the beam scanning is carried out by measuring the received power in a quasi-optical test bench, which is able to rotate the receiver in the horizontal plane. These results are used to design a second prototype antenna (125 GHz) which exhibits 2D beam scanning capabilities with a large bandwidth and scanning range that is sufficient for radar and communications applications.
Resumo:
Inkjet printing is proposed as a means to create the resistively loaded elements of a frequency selective surface (FSS) which suppresses radar backscatter when placed above a metal ground plane. Spectral transmission and reflection measurements from 9 to 18 GHz show that the dot density of the printed features and the volume ratio of an aqueous vehicle and nano-silver (Ag) ink mixture can be selected to obtain surface resistances in the range 1.2-200 Ω/sq.
Resumo:
It has previously been shown that human body shadowing can have a considerable impact on body-to-body communications channels in low multipath environments. Signal degradation directly attributable to shadowing when one user's body obstructs the main line of sight can be as great as 40 dB. When both people's bodies obstruct the direct line of sight path, the communications link can be lost altogether even at very short distances of a few metres. In this paper, using front and back positioned antennas, we investigate the utility of a simple selection combination diversity combining scheme with the aim of mitigating human body shadowing in outdoor body-to-body communications channels at 2.45 GHz. Early results from this work are extremely promising, indicating substantial diversity gains, as great as 29 dB, may be achieved in a number of everyday scenarios likely to be encountered in body-to-body networking. © 2012 IEEE.
Resumo:
The paper reports of a flat spiral phase plate structure based on reflectarray frequency selective surface, FSS, technology for the generation of helical far-field radiation patterns with circular polarization (CP) properties. Double split ring slot FSS is used as a means for adjusting the phase across the reflectarray. Simulations presented demonstrate generation of reflected helical beams at 10 GHz for CP wave incident on the structure. The far-field measurements are in a good agreement with the simulations and demonstrate a null of -11dB in the centre of the radiation pattern attributed to the helical wavefront.
Resumo:
The paper proposes novel substrate integrated waveguide (SIW) slot antenna for E-band communications. The antenna is designed at a two-layer low temperature co-fired ceramic (LTCC) substrate in 71-76 GHz frequency band. The proposed antenna demonstrates a gain better than 11.3 dBi and efficiency of 85% and can be used as a standalone antenna or as an element of a larger array.
Resumo:
The paper reports on the mm-wave characterization of a low temperature co-fired ceramic (LTCC) substrate. A substrate integrated resonator (SIW) method is presented for robust extraction of both permittivity and loss tangent of the substrate. The data obtained allow full characterization of the substrate in the 71 GHz – 95 GHz frequency range suitable for accurate modelling of E-and W-band printed circuits.
Resumo:
A 94 GHz waveguide Rotman lens is described which can be used to implement an amplitude comparison monopulse RADAR. In transmit mode, adjacent dual beam ports are excited with equal amplitude and phase to form a sum radiation pattern, and in receive mode, the outputs of the beam port pairs are combined using magic tees to provide a sum and a difference signal which can be used to calculate an angular error estimate for target acquisition and tracking. This approach provides an amplitude comparison monopulse system which can be scanned in azimuth and which has a low component count, with no requirement for phase shift circuitry in the array feed lines, making it suitable for mm-wave frequencies. A 12 input (beam ports), 12 output (array ports) lens is designed using CST Microwave Studio, and the predicted results are presented.
Resumo:
A double layer circular polarization (CP) frequency selective surface (FSS) for use as a dual-band quasi-optical diplexer suitable for deployment in reflector antenna systems is described. The FSS was designed to reflect Ku band signals (11.7–12.75 GHz) while transmitting Ka band signals (17.3–20.2 GHz) and conserving CP in each of these bands. The simulated/measured reflection loss over the Ku band was less than 0.05/0.1 dB for both TE and TM polarizations, while the simulated/measured axial ratio was less than 0.2/0.75 dB. Over the Ka band, the simulated/measured transmission loss for both polarizations was below 0.25/0.4 dB and the simulated/measured axial ratio was less than 0.25/0.75 dB. To the best of our knowledge, this is the first report of a metallo-dielectric FSS that simultaneously operates in CP for an oblique angle of incidence in both Ku and Ka bands.
Resumo:
A simple circuit that is able to indicate if an injection-locked oscillator is in the locked condition by providing a ‘high’ or ‘low’ output is presented. The detector is compatible with most injection-locked oscillators as all that is required is access to the low-frequency bias circuit, with no direct access needed to the RF/microwave signals. To prove the universal nature of the lock detector it is successfully demonstrated practically for two scenarios: (i) a 1 GHz injection-locked VCO and (ii) a 60 GHz SiGe VCO MMIC.