230 resultados para Combat against droughts
Resumo:
As the most important viral cause of severe respiratory disease in infants and increasing recognition as important in the elderly and immunocompromised, respiratory syncytial virus (RSV) is responsible for a massive health burden worldwide. Prophylactic antibodies were successfully developed against RSV. However, their use is restricted to a small group of infants considered at high risk of severe RSV disease. There is still no specific therapeutics or vaccines to combat RSV. As such, it remains a major unmet medical need for most individuals. The World Health Organisations International Clinical Trials Registry Platform (WHO ICTRP) and PubMed were used to identify and review all RSV vaccine, prophylactic and therapeutic candidates currently in clinical trials. This review presents an expert commentary on all RSV-specific prophylactic and therapeutic candidates that have entered clinical trials since 2008.
Resumo:
This article uses the example of Northern Ireland to illustrate how political mobilization may
be deployed to challenge structural forms of inequality. The experience suggests that regulatory
models can be designed for particular contexts to shape approaches that present challenges to
dominant economic and political orthodoxies. The intention is not to overstate the significance
of this specific transitional context but simply to highlight elements that might feature in any
attempt to mobilize successfully around human rights and equality, and against aspects of neoliberal
thinking.
Resumo:
Male suicide rates are high in Western countries including the US and Canada. Underpinned by men’s resistance to health help-seeking and challenges diagnosing mental illness including male depression, suicide ends the lives of many men amid inflicting pain and grief on the family and friends who are left behind. Fuelled by the discordant relationship between men’s low rates of depression and high rates of suicide we embarked on a unique and novel photovoice study title Man-Up Against Suicide. Specifically, men who have contemplated suicide in the past, and individuals (men and women) who have lost a male partner, family member or friend to suicide were invited to take photographs representing their experiences with men’s suicide with the ultimate goal of messaging ‘at risk’ men that there are alternatives to taking one’s life. Participants subsequently completed semi-structured individual interviews narrating the photographs and providing captions to accompany their selected images. In this presentation we share the preliminary study findings along with some participant photographs and narratives as a means to discussing; 1) men’s experiences of suicidal behaviours and their management strategies; and, 2) how men’s and women’s experiences of losing a male to suicide can de-stigmatize men’s mental illness and raise public awareness about male suicide.
Resumo:
N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. A key issue with dynamic analysis is the length of time a program has to be run to ensure a correct classification. The motivation for this research is to find the optimum subset of operational codes (opcodes) that make the best indicators of malware and to determine how long a program has to be monitored to ensure an accurate support vector machine (SVM) classification of benign and malicious software. The experiments within this study represent programs as opcode density histograms gained through dynamic analysis for different program run periods. A SVM is used as the program classifier to determine the ability of different program run lengths to correctly determine the presence of malicious software. The findings show that malware can be detected with different program run lengths using a small number of opcodes
Resumo:
The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcusfaecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure nonthermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360 s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens.
Resumo:
Burkholderia cenocepacia and other members of the Burkholderia cepacia complex (Bcc) are highly multidrug-resistant bacteria that cause severe pulmonary infections in patients with cystic fibrosis. A screen of 2686 compounds derived from marine organisms identified molecules that could synergize with polymyxin B to inhibit growth of B. cenocepacia. At 1 μg/ml, five compounds synergized with polymyxin B and inhibited the growth of B. cenocepacia by more than 70% compared to growth in polymyxin B alone. Follow-up testing revealed that one compound from the screen, the aminocoumarin antibiotic novobiocin, synergized with polymyxin B and colistin against tobramycin-resistant clinical isolates of B. cenocepacia and Burkholderia multivorans. In parallel, we show that novobiocin sensitivity is common among Bcc species and these bacteria are even more susceptible to an alternative aminocoumarin, clorobiocin, which also had an additive effect with polymyxin B against B. cenocepacia. These studies support using aminocoumarin antibiotics to treat Bcc infections and show that synergizers can be found to increase the efficacy of antimicrobial peptides and polymyxins against Bcc bacteria.
Resumo:
This study investigates the potential of the prohibition of indirect race discrimination to be used for law reform, and to uncover discriminatory practices. It reflects on the history and contents of the concept, and focuses in particular on its application in the Republic of South Africa
Resumo:
Dipeptidyl peptidase 4 (DPP-4) enzymatically inactivates incretin hormones, and DPP-4 inhibitor drugs are clinically approved therapies for type 2 diabetes. The primary substrates of DPP-4 are produced in the intestinal lining and we therefore investigated whether lactobacilli colonizing the gut can inhibit this enzyme. Fifteen Lactobacillus strains (Lb 1-15) from human infant faecal samples were isolated, identified, extracted and screened for inhibitory activity against DPP-4. Activity was compared against Lactobacillus reference strains (Ref 1-7), a Gram positive control (Ctrl 1) and two Gram negative controls (Ctrl 2-3). A range of DPP-4 inhibitory activity was observed (10-32%; P<0.05-0.001). Strains of L. fabifermentans (25%), L. plantarum (12-24%) and L. fermentum (14%) had significant inhibitory activity. However, we also noted that E. coli (Ctrl 2) and S. Typhimurium (Ctrl 3) had the greatest inhibitory activity (30-32%). Contrastingly, some isolates (Lb 12-15) and reference cultures (Ref 1-4) instead of inhibiting DPP-4 actually enhanced it, perhaps indicating the presence of X-prolyl-dipeptidyl-amino-peptidase (PepX). This provides a future rationale for using probiotic bacteria or their components for management of type 2 diabetes via DPP-4 inhibition.
Resumo:
Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross contamination from infected persons. Conventional hand washing involves the use of warm water, soap and friction to remove dirt and microorganisms. Over recent years there has been an increasing availability of hand sanitizing products for use when water and soap are unavailable. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared to hand washing with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases - Web of Science, Scopus and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of the literature showed various limitations in the scientific information due to the absence of a standardized protocol to evaluate efficacy of hand products, and variation in experimental conditions applied in different studies. Despite the existence of conflicting results, scientific evidence seems to support the historical scepticism about the use of water-less hand sanitizers in food preparation settings. Water and soap appear to achieve greater removal of soil and microorganisms than water-less products from hands. None of the hand sanitizers tested in the literature seemed to achieve complete inactivation or removal of all foodborne pathogens tested, and the presence of food debris significantly affected inactivation rates of hand products.
Resumo:
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).
Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.
Resumo:
Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI’s proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.